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1 Problem 1

In the last assignment we made the conjecture that the reduced Gröbner
basis G would consist of k0 = yxy − xyx and polynomials of the form
kn = yxnyx− xyx2yn−1, n > 1, n ∈ N.
Firstly we must show that our proposed basis G generates the same ideal as
k0. To do this I will show that we can obtain kn, n > 1 using k0 using sums
and products:

(−yxn−1)(yxy − xyx) = yxnyx− yxn−1yxy = g1

g1 − yxn−2(yxy − xyx)y = yxnyx− yxn−2yxy2 = g2

g2 − yxn−3(yxy − xyx)y2 = yxnyx− yxn−3yxy3 = g4

and we continue similarly to obtain yxnyx− yxyxyn−1 = gn−2

gn−2 + (yxy − xyx)xyn−1 = yxnyx− xyx2yn−1 = kn as required

Now we must check if we get 0 on reduction by G for all possible S-polynomials.
The possible overlaps we can get between these polynomials are:
1) The self overlap y of k0
2) The overlap y between k0 and kn,∀n > 2
3) The overlap yx between kn and kp,∀n 6= 0, p 6= 0
4) The overlap yx between kn and k0,∀n 6= 0
We get the following S-polynomials:
1) LM(k0) = yxy so we get:
Sy(k0, k0) = k0(xy)− (yx)k0 = −xyx2y + yx2yx = k2 so we get a result of 0
on reduction by G as required for the Diamond Lemma.

2) LM(k0) = yxy, LM(kn) = yxnyx so we get:
Sy(k0, k2) = k0(x

nyx) − yx(k2) = −xyxn+1yx + yx2yx2yn−1 = g1 which is
divisible by k2. On reduction we get
rk2(g1) = g1 − k2(xy

n−1) = −xyxn+1yx + xyx2yxyn−1 = g2 which is divisible
by k2. On reduction we get
rk2(g2) = g2 − x(k2)y

n−1 = −xyxn+1yx + x2yx2yn = −g3 and g3 is divisble
by kn+1. On reduction we get
rkn+1(g3) = g3−xkn+1 = −x2yxyn+x2yx2yn = 0 as required for the Diamond
Lemma.
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3) LM(kn) = yx(xn−1yx), LM(kp) = yxp(yx), so kn, kp have overlap yx.
We get:
Syx(kp, kn) = kp(x

n−1yx)−(yxp)kn = −xyx2yp−1xn−1yx+yxp+1yx2yn−1 = g1
which is divisible by kp+1. On reduction we get
rkp+1(g1) = g1−(kp+1)(xy

n−1) = −xyx2yp−1xn−1yx+xyx2ypxyn−1 = g2 which
is divisible by k0. On reduction we get
rk0(g2) = g2−xyx2yp−1(k0)(y

n−2) = −xyx2yp−1xn−1yx+xyx2yp−1xyxyn−2 =
g3. LM(g3) = xyx2yp−1xyxyn−2 and so we can perform another reduction.
We obtain:
rk0(g3) = −xyx2yp−1xn−1yx+xyx2yp−1x2yxyn−3 = g4 which again is divisible
by k0. We can reduce g4 by k0 another n− 3 times to finally obtain
−xyx2yp−1xn−1yx+xyx2yp−1xn−1yx = 0 as required for the Diamond Lemma.

4) LM(k0) = (yx)y, LM(kn) = yxn(yx) so we get:
Syx(kn, k0) = kn(y)−(yxn)k0 = −xyx2yn+yxn+1yx = kn+1 so we get a result
of 0 on reduction by G as required for Diamond Lemma.
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2 Problem 2

So from last week, we had that the elements of the Gröbner basis of degree
up to 5 were:

xz2yx− z2yz, yzyx− xy2z, y3z, xzyx− zyz, y2x, xyx− yz, zx− xz

So we want to explain the reduced monomials of degree up to 5. They can’t
contain the words:

zx, xyx, y2x, xzyx, y3z, yzyx, xz2yx

We work out how many reduced monomials there are of each degree by sub-
tracting the number combinations which give non-reduced monomials from
the total number of possible monomials of said degree and adding back on
any monomials we double counted:
Of degree 1, there is 3, x, y, z
Of degree 2, there is 32 − 1 = 8
Of degree 3, there is 33 − 2− (3)(2) = 19
Of degree 4, there is 34 − 3 − (3)(4) − (3)(32) + 1 = 40 where we add 1 be-
cuase otherwise we would be double subtracting the case of the non-reduced
monomial zxzx.
Of degree 5, (the idea of this is right, the figures are not and I don’t feel like
fixing the figures right now)there is 35 − 1− 3(2)(3)− 3(32) + 1− 4(33) + y
where y is determined by the number of times we subtract a duplicate for
zx. zxabc gives you 2 non-reduced monomials containing the word zx twice.
Namely ab = zx, and bc = zx with ab. azxbc gives you 1. abzxc gives you
one monomial you already considered. abczx gives you two monomials you
already considered. So y = 3. Thus there is 93 reduced monomials of degree
5.
Overall we get 171 reduced monomials out of a possible 363 = 3 + 32 + 33 +
34 + 35.
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3 Problem 3

We want to compute the reduced Gröbner Basis for the ideal

(x2 + yz, x2 + 3zy) ⊂ F < x, y, z >

Let us choose the ordering glex, x < y < z so that we don’t have to consider
the self overlaps of x2.
Converting the polynomials that generate our ideal to standard form we get

g1 = zy +
x2

3
, g2 = yz + x2

We have LM(g1) = zy, LM(g2) = yz. These have an overlap y and an overlap
z. Lets first consider the y overlap and the corresponding S-polynomial:

Sy(g2, g1) = g1(z)− z(g2) =
x2z

3
− zx2 = f1

f1 is reduced with respect to g1, g2, and so we get a new polynomial in our
Gröbner basis, −f1 = zx2 − x2z

3
. Now we take the other S-polynomial.

Sz(g1, g2) = g2(y)− y(g1) = x2y − yx2

3
= f2

f2 is reduced with respect to g1, g2 and so we get a new polynomial in our
Gröbner basis, yx2 − 3x2y.
We don’t get any more overlaps except for LM(g2), LM(f1) which have an
overlap z.

Sz(g2,−f1) = g2(x
2)− y(−f1) = x4 +

yx2z

3
= p1

Now we perform long division: LM(p1) = yx2z is divisible by LM(f2) = yx2,
taking a reduction

rf2(p1) = p1 + f2(z) = x4 + x2yz = p2

Now LM(p2) = x2yz is divisible by LM(g2) = yz, taking a reduction

rg2(p2) = p2 − (x2)g2 = x4 − x4 = 0

Since we get 0 on long division we don’t get another term in our Gröbner
basis. Thus our reduced Gröbner basis is:

yz + x2, zy +
x2

3
, zx2 − x2z

3
, yx2 − 3x2y
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The reduced monomials with respect to this basis are:

xn1zn21yn22xzn31yn32x...znk1ynk2xl

With ni1 or ni2 = 0, ∀i, but not both zero n1, ni1, ni2 ∈ N, (with 0 ∈
N) and l = 0 or 1.
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4 Problem 4

We will choose the glex order, x < y. We want to compute the Gröbner basis
for the ideal generated by

g1 = yx2 − 2xyx + x2y + y, g2 = y2x− 2yxy + xy2 + x

So LM(g1) = yx2, LM(g2) = y2x. The only overlap we get of these is yx.
LM(g1) = (yx)x, LM(g2) = y(yx). So we get the S-polynomial:

Syx(g2, g1) = g2(x)− y(g1) = −2yxyx + xy2x + x2 + 2yxyx− yx2y − y2

= −yx2y + xy2x + y2 − x2 = −f1

So LM(f1) = yx2y which is divisible by LM(g1) = yx2 so we take a reduction:

rg1(f1) = f1 − g1(y) = −xy2x + y2 − x2 − x2y2 + 2xyxy − y2

= −xy2x− x2y2 + 2xyxy − x2 = −f2

So LM(f2) = xy2x which is divisible by LM(g2) = y2x so we take a reduc-
tion:

rg2(f2) = f2 − x(g2) = x2y2 − 2xyxy + x2 + 2xyxy − x2y2 − x2 = 0

So we get a result of 0 on long division, so we don’t get any new elements in
the Gröbner basis. Thus our reduced Gröbner basis is:

yx2 − 2xyx + x2y + y, y2x− 2yxy + xy2 + x

The reduced monomials are:

xn(yx)qyp,∀n, p, q ∈ N (with 0 ∈ N)

.
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5 Problem 5

5.1 Part a

This follows from part (b) becuase there is infinitely many ways to have the
element an defined for all n for the recurrence relation an+1 = 1+an

an−1
.

5.2 Part b

We have the recurrence relation

an+1 =
1 + an
an−1

for some given a0, a1

We will show that a5 = a0 and that a6 = a1 and thus the relation repeats
and ak+5 = ak, ∀k. Consider a3, a4, a5, a6 where none of these are zero (and
a0, a1 6= 0, a1 6= −1):

a3 =
1 + a2
a1

=
1 + 1+a1

a0

a1

=
a0 + a1 + 1

a0a1

a4 =
1 + a3
a2

=
1 + a0+a1+1

a0a1
1+a1
a0

=
a0a1 + a0 + a1 + 1

a21 + a1

a5 =
1 + a4
a3

=
1 + a0a1+a0+a1+1

a21+a1
a0+a1+1

a0a1

=
a0(a

3
1 + 2a21 + a1 + a0a

2
1 + a0a1)

a31 + 2a21 + a1 + a0a21 + a0a1

= a0

a6 =
1 + a5
a4

=
1 + a0
a4

= (1 + a0)
a21 + a1

a0a1 + a0 + a1 + 1

=
a1(a1 + a0a1 + a0 + 1)

a1 + a0a1 + a0 + 1

= a1

Since a5 = a0, a6 = a1 we get that a7 = a2, a8 = a3, ... as was required.
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The relation to the computation in the first part of the question is as
follows. Assume that x, y, z, t, u 6= 0, then they act like a0, a1, a2, a3, a4, a5
respectively.

xz = y + 1 =⇒ z =
y + 1

x
= a2

yt = z + 1 =⇒ t =
z + 1

y
= a3

zu = t + 1 =⇒ u =
t + 1

z
= a4

tx = u + 1 =⇒ x =
u + 1

t
= a5 = a0

uy = x + 1 =⇒ y =
x + 1

u
= a6 = a1
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