Gröbner Bases - Assignment 3

Sean Martin

25/02/2016

1 Problem 1

In the last assignment we made the conjecture that the reduced Gröbner basis G would consist of $k_0 = yxy - xyx$ and polynomials of the form $k_n = yx^nyx - xyx^2y^{n-1}, n > 1, n \in \mathbb{N}.$

Firstly we must show that our proposed basis G generates the same ideal as k_0 . To do this I will show that we can obtain k_n , n > 1 using k_0 using sums and products:

$$(-yx^{n-1})(yxy - xyx) = yx^nyx - yx^{n-1}yxy = g_1$$

$$g_1 - yx^{n-2}(yxy - xyx)y = yx^nyx - yx^{n-2}yxy^2 = g_2$$

$$g_2 - yx^{n-3}(yxy - xyx)y^2 = yx^nyx - yx^{n-3}yxy^3 = g_4$$
and we continue similarly to obtain $yx^nyx - yxyxy^{n-1} = g_{n-2}$

$$g_{n-2} + (yxy - xyx)xy^{n-1} = yx^nyx - xyx^2y^{n-1} = k_n \text{ as required}$$

Now we must check if we get 0 on reduction by G for all possible S-polynomials. The possible overlaps we can get between these polynomials are:

- 1) The self overlap y of k_0
- 2) The overlap y between k_0 and $k_n, \forall n > 2$
- 3) The overlap yx between k_n and $k_p, \forall n \neq 0, p \neq 0$
- 4) The overlap yx between k_n and $k_0, \forall n \neq 0$

We get the following S-polynomials:

- 1) $LM(k_0) = yxy$ so we get:
- $S_y(k_0, k_0) = k_0(xy) (yx)k_0 = -xyx^2y + yx^2yx = k_2$ so we get a result of 0 on reduction by G as required for the Diamond Lemma.
- 2) $LM(k_0) = yxy$, $LM(k_n) = yx^nyx$ so we get:

 $S_y(k_0,k_2)=k_0(x^nyx)-yx(k_2)=-xyx^{n+1}yx+yx^2yx^2y^{n-1}=g_1$ which is divisible by k_2 . On reduction we get

 $r_{k_2}(g_1) = g_1 - k_2(xy^{n-1}) = -xyx^{n+1}yx + xyx^2yxy^{n-1} = g_2$ which is divisible by k_2 . On reduction we get

 $r_{k_2}(g_2) = g_2 - x(k_2)y^{n-1} = -xyx^{n+1}yx + x^2yx^2y^n = -g_3$ and g_3 is divisble by k_{n+1} . On reduction we get

 $r_{k_{n+1}}(g_3)=g_3-xk_{n+1}=-\bar{x}^2yxy^n+x^2yx^2y^n=0$ as required for the Diamond Lemma.

- 3) $LM(k_n) = yx(x^{n-1}yx)$, $LM(k_p) = yx^p(yx)$, so k_n, k_p have overlap yx. We get:
- $S_{yx}(k_p, k_n) = k_p(x^{n-1}yx) (yx^p)k_n = -xyx^2y^{p-1}x^{n-1}yx + yx^{p+1}yx^2y^{n-1} = g_1$ which is divisible by k_{p+1} . On reduction we get
- $r_{k_{p+1}}(g_1) = g_1 (k_{p+1})(xy^{n-1}) = -xyx^2y^{p-1}x^{n-1}yx + xyx^2y^pxy^{n-1} = g_2$ which is divisible by k_0 . On reduction we get
- $r_{k_0}(g_2) = g_2 xyx^2y^{p-1}(k_0)(y^{n-2}) = -xyx^2y^{p-1}x^{n-1}yx + xyx^2y^{p-1}xyxy^{n-2} = g_3$. $LM(g_3) = xyx^2y^{p-1}xyxy^{n-2}$ and so we can perform another reduction. We obtain:
- $r_{k_0}(g_3)=-xyx^2y^{p-1}x^{n-1}yx+xyx^2y^{p-1}x^2yxy^{n-3}=g_4$ which again is divisible by k_0 . We can reduce g_4 by k_0 another n-3 times to finally obtain $-xyx^2y^{p-1}x^{n-1}yx+xyx^2y^{p-1}x^{n-1}yx=0$ as required for the Diamond Lemma.
- 4) $LM(k_0) = (yx)y$, $LM(k_n) = yx^n(yx)$ so we get: $S_{yx}(k_n, k_0) = k_n(y) (yx^n)k_0 = -xyx^2y^n + yx^{n+1}yx = k_{n+1}$ so we get a result of 0 on reduction by G as required for Diamond Lemma.

So from last week, we had that the elements of the Gröbner basis of degree up to 5 were:

$$xz^{2}yx - z^{2}yz, yzyx - xy^{2}z, y^{3}z, xzyx - zyz, y^{2}x, xyx - yz, zx - xz$$

So we want to explain the reduced monomials of degree up to 5. They can't contain the words:

$$zx$$
, xyx , y^2x , $xzyx$, y^3z , $yzyx$, xz^2yx

We work out how many reduced monomials there are of each degree by subtracting the number combinations which give non-reduced monomials from the total number of possible monomials of said degree and adding back on any monomials we double counted:

Of degree 1, there is 3, x, y, z

Of degree 2, there is $3^2 - 1 = 8$

Of degree 3, there is $3^3 - 2 - (3)(2) = 19$

Of degree 4, there is $3^4 - 3 - (3)(4) - (3)(3^2) + 1 = 40$ where we add 1 because otherwise we would be double subtracting the case of the non-reduced monomial zxzx.

Of degree 5, (the idea of this is right, the figures are not and I don't feel like fixing the figures right now)there is $3^5 - 1 - 3(2)(3) - 3(3^2) + 1 - 4(3^3) + y$ where y is determined by the number of times we subtract a duplicate for zx. zxabc gives you 2 non-reduced monomials containing the word zx twice. Namely ab = zx, and bc = zx with ab. azxbc gives you 1. abzxc gives you one monomial you already considered. abczx gives you two monomials you already considered. So y = 3. Thus there is 93 reduced monomials of degree 5.

Overall we get 171 reduced monomials out of a possible $363 = 3 + 3^2 + 3^3 + 3^4 + 3^5$.

We want to compute the reduced Gröbner Basis for the ideal

$$(x^2 + yz, x^2 + 3zy) \subset F < x, y, z >$$

Let us choose the ordering glex, x < y < z so that we don't have to consider the self overlaps of x^2 .

Converting the polynomials that generate our ideal to standard form we get

$$g_1 = zy + \frac{x^2}{3}, \ g_2 = yz + x^2$$

We have $LM(g_1) = zy$, $LM(g_2) = yz$. These have an overlap y and an overlap z. Lets first consider the y overlap and the corresponding S-polynomial:

$$S_y(g_2, g_1) = g_1(z) - z(g_2) = \frac{x^2 z}{3} - zx^2 = f_1$$

 f_1 is reduced with respect to g_1, g_2 , and so we get a new polynomial in our Gröbner basis, $-f_1 = zx^2 - \frac{x^2z}{3}$. Now we take the other S-polynomial.

$$S_z(g_1, g_2) = g_2(y) - y(g_1) = x^2y - \frac{yx^2}{3} = f_2$$

 f_2 is reduced with respect to g_1, g_2 and so we get a new polynomial in our Gröbner basis, $yx^2 - 3x^2y$.

We don't get any more overlaps except for $LM(g_2)$, $LM(f_1)$ which have an overlap z.

$$S_z(g_2, -f_1) = g_2(x^2) - y(-f_1) = x^4 + \frac{yx^2z}{3} = p_1$$

Now we perform long division: $LM(p_1) = yx^2z$ is divisible by $LM(f_2) = yx^2$, taking a reduction

$$r_{f_2}(p_1) = p_1 + f_2(z) = x^4 + x^2yz = p_2$$

Now $LM(p_2) = x^2yz$ is divisible by $LM(g_2) = yz$, taking a reduction

$$r_{q_2}(p_2) = p_2 - (x^2)q_2 = x^4 - x^4 = 0$$

Since we get 0 on long division we don't get another term in our Gröbner basis. Thus our reduced Gröbner basis is:

$$yz + x^2$$
, $zy + \frac{x^2}{3}$, $zx^2 - \frac{x^2z}{3}$, $yx^2 - 3x^2y$

The reduced monomials with respect to this basis are:

$$x^{n_1}z^{n_{21}}y^{n_{22}}xz^{n_{31}}y^{n_{32}}x...z^{n_{k1}}y^{n_{k2}}x^l$$

With n_{i1} or $n_{i2}=0$, $\forall i$, but not both zero $n_1,n_{i1},n_{i2}\in\mathbb{N}$, (with $0\in\mathbb{N}$) and l=0 or 1.

We will choose the glex order, x < y. We want to compute the Gröbner basis for the ideal generated by

$$g_1 = yx^2 - 2xyx + x^2y + y$$
, $g_2 = y^2x - 2yxy + xy^2 + x$

So $LM(g_1) = yx^2$, $LM(g_2) = y^2x$. The only overlap we get of these is yx. $LM(g_1) = (yx)x$, $LM(g_2) = y(yx)$. So we get the S-polynomial:

$$S_{yx}(g_2, g_1) = g_2(x) - y(g_1) = -2yxyx + xy^2x + x^2 + 2yxyx - yx^2y - y^2$$
$$= -yx^2y + xy^2x + y^2 - x^2 = -f_1$$

So $LM(f_1) = yx^2y$ which is divisible by $LM(g_1) = yx^2$ so we take a reduction:

$$r_{g_1}(f_1) = f_1 - g_1(y) = -xy^2x + y^2 - x^2 - x^2y^2 + 2xyxy - y^2$$
$$= -xy^2x - x^2y^2 + 2xyxy - x^2 = -f_2$$

So $LM(f_2) = xy^2x$ which is divisible by $LM(g_2) = y^2x$ so we take a reduction:

$$r_{q_2}(f_2) = f_2 - x(g_2) = x^2y^2 - 2xyxy + x^2 + 2xyxy - x^2y^2 - x^2 = 0$$

So we get a result of 0 on long division, so we don't get any new elements in the Gröbner basis. Thus our reduced Gröbner basis is:

$$yx^2 - 2xyx + x^2y + y, y^2x - 2yxy + xy^2 + x$$

The reduced monomials are:

 $x^n(yx)^q y^p, \forall n, p, q \in \mathbb{N} \text{ (with } 0 \in \mathbb{N})$

.

5.1 Part a

This follows from part (b) because there is infinitely many ways to have the element a_n defined for all n for the recurrence relation $a_{n+1} = \frac{1+a_n}{a_{n-1}}$.

5.2 Part b

We have the recurrence relation

$$a_{n+1} = \frac{1+a_n}{a_{n-1}}$$
 for some given a_0, a_1

We will show that $a_5 = a_0$ and that $a_6 = a_1$ and thus the relation repeats and $a_{k+5} = a_k$, $\forall k$. Consider a_3, a_4, a_5, a_6 where none of these are zero (and $a_0, a_1 \neq 0, a_1 \neq -1$):

$$a_{3} = \frac{1+a_{2}}{a_{1}} = \frac{1+\frac{1+a_{1}}{a_{0}}}{a_{1}}$$

$$= \frac{a_{0}+a_{1}+1}{a_{0}a_{1}}$$

$$a_{4} = \frac{1+a_{3}}{a_{2}} = \frac{1+\frac{a_{0}+a_{1}+1}{a_{0}a_{1}}}{\frac{1+a_{1}}{a_{0}}}$$

$$= \frac{a_{0}a_{1}+a_{0}+a_{1}+1}{a_{1}^{2}+a_{1}}$$

$$a_{5} = \frac{1+a_{4}}{a_{3}} = \frac{1+\frac{a_{0}a_{1}+a_{0}+a_{1}+1}{a_{1}^{2}+a_{1}}}{\frac{a_{0}+a_{1}+1}{a_{0}a_{1}}}$$

$$= \frac{a_{0}(a_{1}^{3}+2a_{1}^{2}+a_{1}+a_{0}a_{1}^{2}+a_{0}a_{1})}{a_{1}^{3}+2a_{1}^{2}+a_{1}+a_{0}a_{1}^{2}+a_{0}a_{1}}$$

$$= a_{0}$$

$$a_{6} = \frac{1+a_{5}}{a_{4}} = \frac{1+a_{0}}{a_{4}}$$

$$= (1+a_{0})\frac{a_{1}^{2}+a_{1}}{a_{0}a_{1}+a_{0}+a_{1}+1}$$

$$= \frac{a_{1}(a_{1}+a_{0}a_{1}+a_{0}+1)}{a_{1}+a_{0}a_{1}+a_{0}+1}$$

Since $a_5 = a_0, a_6 = a_1$ we get that $a_7 = a_2, a_8 = a_3, ...$ as was required.

The relation to the computation in the first part of the question is as follows. Assume that $x, y, z, t, u \neq 0$, then they act like $a_0, a_1, a_2, a_3, a_4, a_5$ respectively.

$$xz = y + 1 \implies z = \frac{y+1}{x} = a_2$$

$$yt = z + 1 \implies t = \frac{z+1}{y} = a_3$$

$$zu = t+1 \implies u = \frac{t+1}{z} = a_4$$

$$tx = u+1 \implies x = \frac{u+1}{t} = a_5 = a_0$$

$$uy = x+1 \implies y = \frac{x+1}{u} = a_6 = a_1$$