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1 Problem 1

1.1 Part a

glex: compare degree, then compare term by term. So for the given polyno-
mial:
27179 + 3Toxy + T3 + T3 — T2A5 + T3

In standard glex order:

—? xg + x3 + xz + 3xox1 + 2123 + 20129

1.2 Part b

In this case we get:

—z? x3 + a:2 + x3 4+ 22129 + T1203 + 22921

1.3 Part c

We have that wt(z1) = 4, wt(zs) = 2, wt(z3) = 1, so:
wt(z122) =4+ 2 = 6 = wt(za21)
(]31[53) =4+1=5
wt( )=2+2+2=6
wt(ziz3) =2(4) +2(1) =10
wi(xf) =3(1) =3

Then we get the order glex(s21) by comparing weights, and then terms (with
r1 < Ty < T3):

—? x3 + x2 + 3x911 + 22125 + 2173 + x3



2 Problem 2

2.1 Part a

First let us show that < is a total order:

Assume that m # m’ are two non-commutative monomials in x1, x3. Then
there are two possible cases:

1) m has a different number of occurences of x5 to m’ so either m < m’ or m’ <
m.

2) They have the same number of x9, in which we have two cases (Since
m #m'):

2A) Without loss of generality, we can say that m is m’ appended with any
positive number of z; occurences. That is m = m/m”, m” £ 1. Som' <m
2B) m and m' differ at some position. Take the first such position. Without
loss of generality, m must have an 21 and m’ must have an x5 in this position,
since they differ. So m’ < m.

This shows that m # m’ = m < m' or m’ < m that is, we have a total
order.

< is a well order: (argument *)

Take any set S of non-commutative monomials in x1, 5. Then there are two
possible cases:

1) There is a unique element of S with the minimal number of x5 occurences,
and thus a unique minimal element of S.

2) There is no unique element of S with the minimal number of x5 occurences,
in which there are two cases: (Call S" C S the subset of elements with the
minimal number of x5 occurences)

2A) There is one element s € S” such that Vo € S’ x = sa’,2’ # 1. That
is, we can append x; occurences to s to obtain all other elements of S’. So
there is a unique minimal element of S” and so a unique minimal element of
S.

2B) There is no element s as described above. So there must be an element
s € S" which differs to at least one other element s’ € S’ at some posi-
tion. Take the first position where we find at least two differing elements
of S" and call this position i. Reduce S’ to S” where S” € §" C S is the
subset of S’ consisting of monomials with the letter x5 in position i. Then
r=<yNVees" yes\5".

We can give the same argument * for the set S” instead of S to get by
2A) a unique minimal element of S” or by 2B) S C S” which is further
reduced. If we get a further reduced set, then give argument * again to get



a further reduced set, and so forth.

All that remains to be said is that we will eventually get a unique minimal
element in the reduced sets obtained from 2B). I can see this to be true be-
cause 2B) would eventually have to reduce to a singleton, or a set with one
element s that can produce all other elements of the set by appending x;
occurences to s. However I am having trouble presenting this as any kind of
formal argument. Finally we obtain that S has a unique minimal element,
and since S was arbitrary we have a well order.

~< is admissible:

Let mq, mo, m3 be monomials in xy,x5. Let my; < mg, which gives three
possibilities:

1) If my has fewer occurences of xs than my. Then mgm; has fewer oc-
curences of x5 than msmsy and m;ms has fewer occurences of z9 than mqoms.
So order is maintained under multiplication.

2) If my has the same number of occurences of xy as mq, and my = mym/
for some m’ # 1. Then mzmo = mgmym’ so order is preserved by left mul-
tiplication. For right multiplication, if ms = x7 then order is easily seen to
be preserved - we are just appending more x; occurences. Otherwise, ms
has at least one occurence of x5. In this case in the first position mims
and mams = mym/ms differ, m;mgs will have the letter x,. This is becuase
m’ consists of at least one x; occurence so ms must have an x5 term before
m/ms. Thus order is preserved.

3) If m; has the same number of occurences of xs as msq, and in the first
position they differ, m; has the letter x5. Then multiplication can’t change
this. Since we are multiplying m; and my by ms and ms won’t have any
different letters to itself.

2.2 Part b

There are 3! = 6 permutations of 1, xo, x3 so 6 possible orderings, which we
will check to see if an admissable order exists. Assume we have an admissable
order such that z;zy > 23, woxs > 23, z3w1 > x3. We will extensively use
the fact that an admissable order maintains order under multiplication.
Assume that z; > x5 > x3 50 % > 1371 > 22 > 29x3 > 77 so x1? > x? which
is a contradiction.
Assume that x1 > 23 > 29 S0 22 > 1129 > T2 > T3 > 22 contradiction.

1 3 1
Assume that xo > 21 > 23 S0 22 > Tox5 > 22 > 371 > 22 contradiction.

2 1 2
Assume that x4 > 23 > 21 S0 T2 > 2129 > 22 > 2371 > 22 contradiction.

2 3 2
Assume that 3 > x; > 29 SO x2 > ToXg > x? > x1719 > 22 contradiction.

3 1 3
Assume that x3 > z9 > 1 S0 ¥2 > 371 > T3 > 1179 > o3 contradiction.



So we get a contradiction for every possible ordering of x1, x5, z3. Thus our
original assumption that we had an admissable order such that

T1To > m%, Tox3 > 13, X311 > x5 was false. Hence no such admissable order
exists.

3 Question 3

3.1 Part a

Firstly we will consider standard glex order, so that LM (2129 —x2x1) = T22;.
Long division algorithm, dividing f = xox12921 by ¢ = 120 — x0271:
LM(f) = f is divisible by LM (g), f = m'LM (g)m" so replace f by r,(f) =

_ Lel)
f LC(g)

m/gm” as follows:

f=LM(g)ror1 = Tg(f) =f- _ng%% = f— f+x139001

Let f = ry(f) (the programming type of equal) from the last step. Again
LM(f) = f is divisible by LM (g) so replace f by ry(f) as follows:

[=mmLM(g) = ry(f)=f - _ilxlfzg = f—f+rzmizs

Let f = ry(f) from the last step. Again LM(f) = f is divisible by LM(g)
so replace f by r,4(f):

[ =21 LM(g)ry = ry(f) = f — _lelng = f—f+rzir01s

At this point f = r,(f) is not divisible by LM(g), and f — LT(f) = 0, so
return LT(f) = [ = x1x12929

We can do this long division again, with f = zox2921 divided by g =
T1T9 — X2X7.

LM(f) =f= $2$1LM(9) = Tg(f) = [+ T2w19 = 12717179
Let f =r4(f) from the last step.
LM(f) = f = LM(g)r172 = r,(f) = f + gr120 = 21727122

As before, we do one more reduction (the same one as before) to return the
same answer: TiTTals



Now we could change the ordering so that LM(g) = x1xo and then divi-
sion of f by g would proceed as follows:

LM(f) =f= $2LM(9)$1 — Tg(f) =f- %@g% = T2X2T171

So we return the answer zoxoxixy, which is different. So it would seem
that the long division algorithm only produces a unique answer for a fixed
ordering.

3.2 Partb

Let f = 23, g = 22 — 1125 +23 and consider standard glex order, so LM (g) =
r3. So long division proceeds as follows, dividing f by g:

LM(f) = f=2LM(g9) = Tg(f) =f- %@9 = —%UU% + Tox1 X

Now let f = r4(f) from the last step. LM(f) is not divisible by LM(g).
And f — LT(f) = —wxo2? is also not divisible by LM(g) so we return
LT(f) = xox12s.

We could also do long division as follows for standard glex:
LM(f) = f = LM(g)rs = 14(f) = f — gro = —xizs + 2175
Let f =r,(f) from the last step.
LM(f) = ma5 = 2. LM (9) = 1,(f) = f—119 = —2i09 — 2} + 7709 = —2}

Which is different, so it would seem that long division does not produce a
unique answer.

x5 is not divisible by z? or ;w3 so any other ordering with LM(g) # x3

will just return z3 at the end.

4 Question 4

4.1 Part a

Let I = (x1 — x9, 71 — x3) and F' = F(z1, 9, x3). Then
r1—x €l = 0+l =x1—20+=x14+1—(v2+1) = x1+1=19+1,

b}



that is, x1, 9 are equivalent. Similarly x1 —axo € [ = x1+1 =23+ 1. So
we have that xy + 1 = v + [ = x3 + I, thus cosets of powers of x; form a
spanning set in the quotient.

Thus we can consider z; to be just x and form a map f : F' — Flz|,z; —
x which is well defined and surjective homomorphism. Since f is clearly
surjective, F'/kerf ~ F[xz] by the first isomorphism theorem. Thus F’/[ ~
Flx] as required since I C kerf and this shows linear independence of the
cosets of powers of .

4.2 Part b

We will use the result shown in class, that G C [ is a Grobner Basis of [ iff
cosets of monmials reduced with respect to G form a basis of F(xy,...,x,)/1.
Let G = {x; — w9, 21 — x5} and I be the ideal G generates, so G C I. Firstly
consider standard glex order:

In this case, LM (z1 — x3) = x9, LM(x; — x3) = x3 so the monomials
of the form z} are reduced with respect to G. The cosets of these mono-

mials, =7 + I span F[x] and are linearly independent, so form a basis of
Flx] ~ F(xy,xq9,x3)/I by part a. Thus G is a Grobner Basis of 1.

Consider now reverse glex order:

In this case, LM(xqy — x9) = x1, LM (21 — x3) = 21 so the monomials of
F{x1,x9,23) which do not contain an z; term are reduced with respect to G.
The cosets of these monomials will not be linearly independent since a,b €
F, a(xe + 1)+ b(xs+ 1) = 0 for a = —b since x9 — 3 € I and xo, x5 are
reduced monomials with respect to G. Thus these monomials can’t form a
basis. Thus G is not a Grobner Basis of I for reverse glex order.



