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1 Problem 1

1.1 Part a

glex: compare degree, then compare term by term. So for the given polyno-
mial:

2x1x2 + 3x2x1 + x1x3 + x3
2 − x2

1x
2
3 + x3

3

In standard glex order:

−x2
1x

2
3 + x3

3 + x3
2 + 3x2x1 + x1x3 + 2x1x2

1.2 Part b

In this case we get:

−x2
1x

2
3 + x3

2 + x3
3 + 2x1x2 + x1x3 + 2x2x1

1.3 Part c

We have that wt(x1) = 4, wt(x2) = 2, wt(x3) = 1, so:
wt(x1x2) = 4 + 2 = 6 = wt(x2x1)
wt(x1x3) = 4 + 1 = 5
wt(x3

2) = 2 + 2 + 2 = 6
wt(x2

1x
2
3) = 2(4) + 2(1) = 10

wt(x3
3) = 3(1) = 3

Then we get the order glex(4,2,1) by comparing weights, and then terms (with
x1 < x2 < x3):

−x2
1x

2
3 + x3

2 + 3x2x1 + 2x1x2 + x1x3 + x3
3

1



2 Problem 2

2.1 Part a

First let us show that ≺ is a total order:
Assume that m 6= m′ are two non-commutative monomials in x1, x2. Then
there are two possible cases:
1) m has a different number of occurences of x2 to m′ so either m ≺ m′ or m′ ≺
m.
2) They have the same number of x2, in which we have two cases (Since
m 6= m′):
2A) Without loss of generality, we can say that m is m′ appended with any
positive number of x1 occurences. That is m = m′m′′,m′′ 6= 1. So m′ ≺ m
2B) m and m′ differ at some position. Take the first such position. Without
loss of generality, m must have an x1 and m′ must have an x2 in this position,
since they differ. So m′ ≺ m.
This shows that m 6= m′ =⇒ m ≺ m′ or m′ ≺ m that is, we have a total
order.

≺ is a well order: (argument *)
Take any set S of non-commutative monomials in x1, x2. Then there are two
possible cases:
1) There is a unique element of S with the minimal number of x2 occurences,
and thus a unique minimal element of S.
2) There is no unique element of S with the minimal number of x2 occurences,
in which there are two cases: (Call S ′ ⊂ S the subset of elements with the
minimal number of x2 occurences)
2A) There is one element s ∈ S ′ such that ∀x ∈ S ′, x = sx′, x′ 6= 1. That
is, we can append x1 occurences to s to obtain all other elements of S ′. So
there is a unique minimal element of S ′ and so a unique minimal element of
S.
2B) There is no element s as described above. So there must be an element
s ∈ S ′ which differs to at least one other element s′ ∈ S ′ at some posi-
tion. Take the first position where we find at least two differing elements
of S ′ and call this position i. Reduce S ′ to S ′′ where S ′′ ⊂ S ′ ⊂ S is the
subset of S ′ consisting of monomials with the letter x2 in position i. Then
x ≺ y,∀x ∈ S ′′, y ∈ S ′ \ S ′′.

We can give the same argument * for the set S ′′ instead of S to get by
2A) a unique minimal element of S ′′ or by 2B) S ′′′ ⊂ S ′′ which is further
reduced. If we get a further reduced set, then give argument * again to get
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a further reduced set, and so forth.
All that remains to be said is that we will eventually get a unique minimal
element in the reduced sets obtained from 2B). I can see this to be true be-
cause 2B) would eventually have to reduce to a singleton, or a set with one
element s that can produce all other elements of the set by appending x1

occurences to s. However I am having trouble presenting this as any kind of
formal argument. Finally we obtain that S has a unique minimal element,
and since S was arbitrary we have a well order.

≺ is admissible:
Let m1,m2,m3 be monomials in x1, x2. Let m1 ≺ m2, which gives three
possibilities:
1) If m1 has fewer occurences of x2 than m2. Then m3m1 has fewer oc-
curences of x2 than m3m2 and m1m3 has fewer occurences of x2 than m2m3.
So order is maintained under multiplication.
2) If m1 has the same number of occurences of x2 as m2, and m2 = m1m

′

for some m′ 6= 1. Then m3m2 = m3m1m
′ so order is preserved by left mul-

tiplication. For right multiplication, if m3 = xn
1 then order is easily seen to

be preserved - we are just appending more x1 occurences. Otherwise, m3

has at least one occurence of x2. In this case in the first position m1m3

and m2m3 = m1m
′m3 differ, m1m3 will have the letter x2. This is becuase

m′ consists of at least one x1 occurence so m3 must have an x2 term before
m′m3. Thus order is preserved.
3) If m1 has the same number of occurences of x2 as m2, and in the first
position they differ, m1 has the letter x2. Then multiplication can’t change
this. Since we are multiplying m1 and m2 by m3 and m3 won’t have any
different letters to itself.

2.2 Part b

There are 3! = 6 permutations of x1, x2, x3 so 6 possible orderings, which we
will check to see if an admissable order exists. Assume we have an admissable
order such that x1x2 > x2

3, x2x3 > x2
1, x3x1 > x2

2. We will extensively use
the fact that an admissable order maintains order under multiplication.
Assume that x1 > x2 > x3 so x2

1 > x3x1 > x2
2 > x2x3 > x2

1 so x12 > x2
1 which

is a contradiction.
Assume that x1 > x3 > x2 so x2

1 > x1x2 > x2
3 > x2x3 > x2

1 contradiction.
Assume that x2 > x1 > x3 so x2

2 > x2x3 > x2
1 > x3x1 > x2

2 contradiction.
Assume that x2 > x3 > x1 so x2

2 > x1x2 > x2
3 > x3x1 > x2

2 contradiction.
Assume that x3 > x1 > x2 so x2

3 > x2x3 > x2
1 > x1x2 > x2

3 contradiction.
Assume that x3 > x2 > x1 so x2

3 > x3x1 > x2
2 > x1x2 > x2

3 contradiction.
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So we get a contradiction for every possible ordering of x1, x2, x3. Thus our
original assumption that we had an admissable order such that
x1x2 > x2

3, x2x3 > x2
1, x3x1 > x2

2 was false. Hence no such admissable order
exists.

3 Question 3

3.1 Part a

Firstly we will consider standard glex order, so that LM(x1x2−x2x1) = x2x1.
Long division algorithm, dividing f = x2x1x2x1 by g = x1x2 − x2x1:
LM(f) = f is divisible by LM(g), f = m′LM(g)m′′ so replace f by rg(f) =

f − LC(f)
LC(g)

m′gm′′ as follows:

f = LM(g)x2x1 =⇒ rg(f) = f − 1

−1
gx2x1 = f − f + x1x2x2x1

Let f = rg(f) (the programming type of equal) from the last step. Again
LM(f) = f is divisible by LM(g) so replace f by rg(f) as follows:

f = x1x2LM(g) =⇒ rg(f) = f − 1

−1
x1x2g = f − f + x1x2x1x2

Let f = rg(f) from the last step. Again LM(f) = f is divisible by LM(g)
so replace f by rg(f):

f = x1LM(g)x2 =⇒ rg(f) = f − 1

−1
x1gx2 = f − f + x1x1x2x2

At this point f = rg(f) is not divisible by LM(g), and f − LT (f) = 0, so
return LT (f) = f = x1x1x2x2

We can do this long division again, with f = x2x1x2x1 divided by g =
x1x2 − x2x1:

LM(f) = f = x2x1LM(g) =⇒ rg(f) = f + x2x1g = x2x1x1x2

Let f = rg(f) from the last step.

LM(f) = f = LM(g)x1x2 =⇒ rg(f) = f + gx1x2 = x1x2x1x2

As before, we do one more reduction (the same one as before) to return the
same answer: x1x1x2x2
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Now we could change the ordering so that LM(g) = x1x2 and then divi-
sion of f by g would proceed as follows:

LM(f) = f = x2LM(g)x1 =⇒ rg(f) = f − 1

1
x2gx1 = x2x2x1x1

So we return the answer x2x2x1x1, which is different. So it would seem
that the long division algorithm only produces a unique answer for a fixed
ordering.

3.2 Part b

Let f = x3
2, g = x2

1−x1x2+x2
2 and consider standard glex order, so LM(g) =

x2
2. So long division proceeds as follows, dividing f by g:

LM(f) = f = x2LM(g) =⇒ rg(f) = f − 1

1
x2g = −x2x

2
1 + x2x1x2

Now let f = rg(f) from the last step. LM(f) is not divisible by LM(g).
And f − LT (f) = −x2x

2
1 is also not divisible by LM(g) so we return

LT (f) = x2x1x2.

We could also do long division as follows for standard glex:

LM(f) = f = LM(g)x2 =⇒ rg(f) = f − gx2 = −x2
1x2 + x1x

2
2

Let f = rg(f) from the last step.

LM(f) = x1x
2
2 = x1LM(g) =⇒ rg(f) = f−x1g = −x2

1x2−x3
1+x2

1x2 = −x3
1

Which is different, so it would seem that long division does not produce a
unique answer.

x3
2 is not divisible by x2

1 or x1x2 so any other ordering with LM(g) 6= x2
2

will just return x3
2 at the end.

4 Question 4

4.1 Part a

Let I = (x1 − x2, x1 − x3) and F ′ = F 〈x1, x2, x3〉. Then
x1−x2 ∈ I =⇒ 0+I = x1−x2 +I = x1 +I− (x2 +I) =⇒ x1 +I = x2 +I,
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that is, x1, x2 are equivalent. Similarly x1− x2 ∈ I =⇒ x1 + I = x3 + I. So
we have that x1 + I = x2 + I = x3 + I, thus cosets of powers of x1 form a
spanning set in the quotient.
Thus we can consider x1 to be just x and form a map f : F ′ 7→ F [x], xi →
x which is well defined and surjective homomorphism. Since f is clearly
surjective, F ′/kerf ' F [x] by the first isomorphism theorem. Thus F ′/I '
F [x] as required since I ⊂ kerf and this shows linear independence of the
cosets of powers of x1.

4.2 Part b

We will use the result shown in class, that G ⊂ I is a Gröbner Basis of I iff
cosets of monmials reduced with respect to G form a basis of F 〈x1, ..., xn〉/I.
Let G = {x1−x2, x1−x3} and I be the ideal G generates, so G ⊂ I. Firstly
consider standard glex order:
In this case, LM(x1 − x2) = x2, LM(x1 − x3) = x3 so the monomials
of the form xn

1 are reduced with respect to G. The cosets of these mono-
mials, xn

1 + I span F [x] and are linearly independent, so form a basis of
F [x] ' F 〈x1, x2, x3〉/I by part a. Thus G is a Gröbner Basis of I.

Consider now reverse glex order:
In this case, LM(x1 − x2) = x1, LM(x1 − x3) = x1 so the monomials of
F 〈x1, x2, x3〉 which do not contain an x1 term are reduced with respect to G.
The cosets of these monomials will not be linearly independent since a, b ∈
F, a(x2 + I) + b(x3 + I) = 0 for a = −b since x2 − x3 ∈ I and x2, x3 are
reduced monomials with respect to G. Thus these monomials can’t form a
basis. Thus G is not a Gröbner Basis of I for reverse glex order.

6


