Gröbner Bases - Assignment 1

Sean Martin

01/02/2016

1 Problem 1

1.1 Part a

glex: compare degree, then compare term by term. So for the given polynomial:

$$2x_1x_2 + 3x_2x_1 + x_1x_3 + x_2^3 - x_1^2x_3^2 + x_3^3$$

In standard glex order:

$$-x_1^2x_3^2 + x_3^3 + x_2^3 + 3x_2x_1 + x_1x_3 + 2x_1x_2$$

1.2 Part b

In this case we get:

$$-x_1^2x_3^2 + x_2^3 + x_3^3 + 2x_1x_2 + x_1x_3 + 2x_2x_1$$

1.3 Part c

We have that $wt(x_1) = 4$, $wt(x_2) = 2$, $wt(x_3) = 1$, so: $wt(x_1x_2) = 4 + 2 = 6 = wt(x_2x_1)$ $wt(x_1x_3) = 4 + 1 = 5$ $wt(x_2^3) = 2 + 2 + 2 = 6$ $wt(x_1^2x_3^2) = 2(4) + 2(1) = 10$ $wt(x_3^3) = 3(1) = 3$

Then we get the order $glex_{(4,2,1)}$ by comparing weights, and then terms (with $x_1 < x_2 < x_3$):

$$-x_1^2x_3^2 + x_2^3 + 3x_2x_1 + 2x_1x_2 + x_1x_3 + x_3^3$$

2 Problem 2

2.1 Part a

First let us show that \prec is a total order:

Assume that $m \neq m'$ are two non-commutative monomials in x_1, x_2 . Then there are two possible cases:

- 1) m has a different number of occurrences of x_2 to m' so either $m \prec m'$ or $m' \prec m$.
- 2) They have the same number of x_2 , in which we have two cases (Since $m \neq m'$):
- 2A) Without loss of generality, we can say that m is m' appended with any positive number of x_1 occurrences. That is $m = m'm'', m'' \neq 1$. So $m' \prec m$ 2B) m and m' differ at some position. Take the first such position. Without loss of generality, m must have an x_1 and m' must have an x_2 in this position,

This shows that $m \neq m' \implies m \prec m'$ or $m' \prec m$ that is, we have a total order.

 \prec is a well order: (argument *)

since they differ. So $m' \prec m$.

Take any set S of non-commutative monomials in x_1, x_2 . Then there are two possible cases:

- 1) There is a unique element of S with the minimal number of x_2 occurrences, and thus a unique minimal element of S.
- 2) There is no unique element of S with the minimal number of x_2 occurrences, in which there are two cases: (Call $S' \subset S$ the subset of elements with the minimal number of x_2 occurrences)
- 2A) There is one element $s \in S'$ such that $\forall x \in S', x = sx', x' \neq 1$. That is, we can append x_1 occurrences to s to obtain all other elements of S'. So there is a unique minimal element of S' and so a unique minimal element of S.
- 2B) There is no element s as described above. So there must be an element $s \in S'$ which differs to at least one other element $s' \in S'$ at some position. Take the first position where we find at least two differing elements of S' and call this position i. Reduce S' to S'' where $S'' \subset S' \subset S$ is the subset of S' consisting of monomials with the letter x_2 in position i. Then $x \prec y, \forall x \in S'', y \in S' \setminus S''$.

We can give the same argument * for the set S'' instead of S to get by 2A) a unique minimal element of S'' or by 2B) $S''' \subset S''$ which is further reduced. If we get a further reduced set, then give argument * again to get

a further reduced set, and so forth.

All that remains to be said is that we will eventually get a unique minimal element in the reduced sets obtained from 2B). I can see this to be true because 2B) would eventually have to reduce to a singleton, or a set with one element s that can produce all other elements of the set by appending x_1 occurrences to s. However I am having trouble presenting this as any kind of formal argument. Finally we obtain that S has a unique minimal element, and since S was arbitrary we have a well order.

\prec is admissible:

Let m_1, m_2, m_3 be monomials in x_1, x_2 . Let $m_1 \prec m_2$, which gives three possibilities:

- 1) If m_1 has fewer occurrences of x_2 than m_2 . Then m_3m_1 has fewer occurrences of x_2 than m_3m_2 and m_1m_3 has fewer occurrences of x_2 than m_2m_3 . So order is maintained under multiplication.
- 2) If m_1 has the same number of occurrences of x_2 as m_2 , and $m_2 = m_1 m'$ for some $m' \neq 1$. Then $m_3 m_2 = m_3 m_1 m'$ so order is preserved by left multiplication. For right multiplication, if $m_3 = x_1^n$ then order is easily seen to be preserved we are just appending more x_1 occurrences. Otherwise, m_3 has at least one occurrence of x_2 . In this case in the first position $m_1 m_3$ and $m_2 m_3 = m_1 m' m_3$ differ, $m_1 m_3$ will have the letter x_2 . This is because m' consists of at least one x_1 occurrence so m_3 must have an x_2 term before $m'm_3$. Thus order is preserved.
- 3) If m_1 has the same number of occurrences of x_2 as m_2 , and in the first position they differ, m_1 has the letter x_2 . Then multiplication can't change this. Since we are multiplying m_1 and m_2 by m_3 and m_3 won't have any different letters to itself.

2.2 Part b

There are 3! = 6 permutations of x_1, x_2, x_3 so 6 possible orderings, which we will check to see if an admissable order exists. Assume we have an admissable order such that $x_1x_2 > x_3^2$, $x_2x_3 > x_1^2$, $x_3x_1 > x_2^2$. We will extensively use the fact that an admissable order maintains order under multiplication.

Assume that $x_1 > x_2 > x_3$ so $x_1^2 > x_3x_1 > x_2^2 > x_2x_3 > x_1^2$ so $x_1^2 > x_1^2$ which is a contradiction.

Assume that $x_1 > x_3 > x_2$ so $x_1^2 > x_1x_2 > x_3^2 > x_2x_3 > x_1^2$ contradiction. Assume that $x_2 > x_1 > x_3$ so $x_2^2 > x_2x_3 > x_1^2 > x_3x_1 > x_2^2$ contradiction. Assume that $x_2 > x_3 > x_1$ so $x_2^2 > x_1x_2 > x_3^2 > x_3x_1 > x_2^2$ contradiction. Assume that $x_3 > x_1 > x_2$ so $x_3^2 > x_2x_3 > x_1^2 > x_1x_2 > x_3^2$ contradiction. Assume that $x_3 > x_2 > x_1$ so $x_3^2 > x_3x_1 > x_2^2 > x_1x_2 > x_3^2$ contradiction. So we get a contradiction for every possible ordering of x_1, x_2, x_3 . Thus our original assumption that we had an admissable order such that $x_1x_2 > x_3^2$, $x_2x_3 > x_1^2$, $x_3x_1 > x_2^2$ was false. Hence no such admissable order exists.

3 Question 3

3.1 Part a

Firstly we will consider standard glex order, so that $LM(x_1x_2-x_2x_1)=x_2x_1$. Long division algorithm, dividing $f=x_2x_1x_2x_1$ by $g=x_1x_2-x_2x_1$: LM(f)=f is divisible by LM(g), f=m'LM(g)m'' so replace f by $r_g(f)=f-\frac{LC(f)}{LC(g)}m'gm''$ as follows:

$$f = LM(g)x_2x_1 \implies r_g(f) = f - \frac{1}{-1}gx_2x_1 = f - f + x_1x_2x_2x_1$$

Let $f = r_g(f)$ (the programming type of equal) from the last step. Again LM(f) = f is divisible by LM(g) so replace f by $r_g(f)$ as follows:

$$f = x_1 x_2 LM(g) \implies r_g(f) = f - \frac{1}{-1} x_1 x_2 g = f - f + x_1 x_2 x_1 x_2$$

Let $f = r_g(f)$ from the last step. Again LM(f) = f is divisible by LM(g) so replace f by $r_g(f)$:

$$f = x_1 LM(g)x_2 \implies r_g(f) = f - \frac{1}{-1}x_1gx_2 = f - f + x_1x_1x_2x_2$$

At this point $f = r_g(f)$ is not divisible by LM(g), and f - LT(f) = 0, so return $LT(f) = f = x_1x_1x_2x_2$

We can do this long division again, with $f = x_2x_1x_2x_1$ divided by $g = x_1x_2 - x_2x_1$:

$$LM(f) = f = x_2 x_1 LM(g) \implies r_g(f) = f + x_2 x_1 g = x_2 x_1 x_1 x_2$$

Let $f = r_g(f)$ from the last step.

$$LM(f) = f = LM(g)x_1x_2 \implies r_g(f) = f + gx_1x_2 = x_1x_2x_1x_2$$

As before, we do one more reduction (the same one as before) to return the same answer: $x_1x_1x_2x_2$

Now we could change the ordering so that $LM(g) = x_1x_2$ and then division of f by g would proceed as follows:

$$LM(f) = f = x_2 LM(g)x_1 \implies r_g(f) = f - \frac{1}{1}x_2 gx_1 = x_2 x_2 x_1 x_1$$

So we return the answer $x_2x_2x_1x_1$, which is different. So it would seem that the long division algorithm only produces a unique answer for a fixed ordering.

3.2 Part b

Let $f = x_2^3$, $g = x_1^2 - x_1x_2 + x_2^2$ and consider standard glex order, so $LM(g) = x_2^2$. So long division proceeds as follows, dividing f by g:

$$LM(f) = f = x_2 LM(g) \implies r_g(f) = f - \frac{1}{1}x_2g = -x_2x_1^2 + x_2x_1x_2$$

Now let $f = r_g(f)$ from the last step. LM(f) is not divisible by LM(g). And $f - LT(f) = -x_2x_1^2$ is also not divisible by LM(g) so we return $LT(f) = x_2x_1x_2$.

We could also do long division as follows for standard glex:

$$LM(f) = f = LM(g)x_2 \implies r_q(f) = f - gx_2 = -x_1^2x_2 + x_1x_2^2$$

Let $f = r_q(f)$ from the last step.

$$LM(f) = x_1 x_2^2 = x_1 LM(g) \implies r_q(f) = f - x_1 g = -x_1^2 x_2 - x_1^3 + x_1^2 x_2 = -x_1^3$$

Which is different, so it would seem that long division does not produce a unique answer.

 x_2^3 is not divisible by x_1^2 or x_1x_2 so any other ordering with $LM(g) \neq x_2^2$ will just return x_2^3 at the end.

4 Question 4

4.1 Part a

Let
$$I = (x_1 - x_2, x_1 - x_3)$$
 and $F' = F\langle x_1, x_2, x_3 \rangle$. Then $x_1 - x_2 \in I \implies 0 + I = x_1 - x_2 + I = x_1 + I - (x_2 + I) \implies x_1 + I = x_2 + I$,

that is, x_1, x_2 are equivalent. Similarly $x_1 - x_2 \in I \implies x_1 + I = x_3 + I$. So we have that $x_1 + I = x_2 + I = x_3 + I$, thus cosets of powers of x_1 form a spanning set in the quotient.

Thus we can consider x_1 to be just x and form a map $f: F' \mapsto F[x], x_i \to x$ which is well defined and surjective homomorphism. Since f is clearly surjective, $F'/\ker f \simeq F[x]$ by the first isomorphism theorem. Thus $F'/I \simeq F[x]$ as required since $I \subset \ker f$ and this shows linear independence of the cosets of powers of x_1 .

4.2 Part b

We will use the result shown in class, that $G \subset I$ is a Gröbner Basis of I iff cosets of monmials reduced with respect to G form a basis of $F\langle x_1, ..., x_n \rangle / I$. Let $G = \{x_1 - x_2, x_1 - x_3\}$ and I be the ideal G generates, so $G \subset I$. Firstly consider standard glex order:

In this case, $LM(x_1 - x_2) = x_2$, $LM(x_1 - x_3) = x_3$ so the monomials of the form x_1^n are reduced with respect to G. The cosets of these monomials, $x_1^n + I$ span F[x] and are linearly independent, so form a basis of $F[x] \simeq F\langle x_1, x_2, x_3 \rangle / I$ by part a. Thus G is a Gröbner Basis of I.

Consider now reverse glex order:

In this case, $LM(x_1 - x_2) = x_1$, $LM(x_1 - x_3) = x_1$ so the monomials of $F\langle x_1, x_2, x_3 \rangle$ which do not contain an x_1 term are reduced with respect to G. The cosets of these monomials will not be linearly independent since $a, b \in F$, $a(x_2 + I) + b(x_3 + I) = 0$ for a = -b since $x_2 - x_3 \in I$ and x_2, x_3 are reduced monomials with respect to G. Thus these monomials can't form a basis. Thus G is not a Gröbner Basis of I for reverse glex order.