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Topological Gauge Theory

Topological gauge theory is of interest physically as a setting in
which many aspects of quantum field theory can be analyzed
exactly.
At the same time, topological gauge theory connects to various
subjects in mathematics such as (algebraic) geometry, modular
forms etc.
Today, I will consider the topological twist of N = 4
supersymmetric Yang-Mills theory known as Vafa-Witten theory on
Fano four-manifolds. I will explain how low order terms of the
partition functions can be determined using quivers.



Field content of VW theory

Let X be a smooth, compact four-manifold. Let P be a principle
G -bundle.
The bosonic fields in the twisted theory are:

• Field strength F ∈ Ω2(X , adP)

• Complex scalar field φ ∈ Ω0(X , adP)⊗ C
• Real scalar field C ∈ Ω0(X , adP)

• Self-dual 2-form B+ ∈ Ω2+(X , adP)



Q-fixed equations

The Q-fixed equations are

F+ + [C ,B+] + [B+.B+] = 0

dC + d ∗ B+ = 0

In general, these equations have multiple components of solutions.
However, for constant scalar curvature R ≥ 0, one has

C = B+ = 0⇒ F+ = 0

I.e., only the instanton component is non-empty. These solutions
saturate the BPS inequality∫

X
Tr[F ∧ ∗F ] ≥

∣∣∣∣∫
X
Tr[F ∧ F ]

∣∣∣∣



U(N) Instantons are famously in 1-to-1 correspondence with
semi-stable vector bundles. Let
γ ∈ (N, c1, ch2) = (N, c1,

1
2c

2
1 − c2) be the Chern character of the

gauge bundle, and M(γ; J) the moduli space of Gieseker
semi-stable vector bundles wrt to the polarization J.



Partition function

N = 4 YM is a superconformal theory with UV coupling constant
τ = θ

2π + 4πi
g2 Let

q = e2πiτ

The partition function of the theory is a generating function of
Euler numbers. Let us fix N = 2, µ = c1, n = ch2, and

cµ(n) = χ(M(γ; J))

Then,
hµ(τ) =

∑
n

cµ(n) qn



For the purpose of this talk, I restrict to X = P2. All discussion
continues with minor modifications to other toric four-manifolds,
for example F0.
The mirror of the non-compact CY KF0 is a local curve. See the
talk by Pietro Longhi in this workshop for the relation to spectral
and exponential networks.



Partition functions for N = 2

A combination of results by Klyachko, Vafa-Witten, Yoshioka gives
for X = P2

hµ(τ) =
fµ(τ)

q1/4
∏∞

n=1(1− qn)6

with fµ generating functions of Hurwitz class numbers H(n)

f0(τ) =
∞∑
n=0

3H(4n) qn = −1

4
+

3

2
q + 3q2 + . . . ,

and

f1(τ) =
∞∑
n=1

3H(4n − 1) qn−1/4 = q3/4(1 + 3q + 3q2 + . . . ),



Partition functions for N = 2

• Yoshioka’s approach was originally based on working over
finite fields Fq and the Weil conjectures.

• fµ are examples of mock modular forms studied by
Ramanujan, Zagier, Zwegers. . .



Partition functions for N > 2

Generalizing the approach of Yoshioka combined with wall-crossing
formula’s, generating functions of Poincaré polynomial,

p(y ;M) =

dimC X∑
j=0

bj(M) y j

of M(γ; J) can be determined for arbitrary γ and J. JM 2011-18

These are generalizations of mock modular forms, ie mock modular
forms of depth N − 1. The Darboux coordinates Xγ discussed in
Neitzke’s talk were instrumental for derivations of the
non-holomorphic part
Alexandrov, Banerjee, JM, Pioline ’16-’17, Alexandrov, JM Pioline ’19



From arXiv:2004.14466:



From arXiv:2004.14466:



Besides Yoshioka’s approach, there is another approach to bundles
on P2, namely using quivers or monads. This goes back to work by
Beilinson, Drézet, le Potier,. . . from 1970’s, 80’s, and work on
D-branes by Douglas, Fiol, Rommelsberger for C3/Z3,. . . . The
resolution of C3/Z3 is the total space of the canonical bundle KP2 .
This geometry appears in the geometric engineering of the rank 1
E0 5d SCFT. See for example Morrison, Seiberg (1996),. . . ,
Closset, Del Zotto (2019)

Yet other approaches are:

• toric localization Klyachko (1991), Kool (2009), Bonelli et al (2021), and others,

• the u-plane JM, Moore (2021).

• . . .



Quiver

Quiver:

1. Vertices i ∈ V

2. Gauge groups U(Ni )

3. FI parameters ζi ,∑
i ζi = 0

4. |κij | bifundamental
chiral multiplets φaij ,
a = 1, . . . , |κij |

5. Superpotential W (φaij)

κ23κ12

κ13U (N 1) ,ζ 1 U (N 3) , ζ3

U (N 2) ,ζ2



Quiver moduli space

D-term equations:

ζi =
∑

a,j ,κij>0

(φaij)
†φaij −

∑
a,j ,κij<0

(φaij)
†φaij

F-term equations:

∂W (φaij)

∂φbk`
= 0, ∀b, k , `

Quiver moduli space MQ( ~N; ~ζ):
Space of φaij satisfying D- and F-term equations

BPS index:
Ω( ~N, ~ζ) = χ(MQ( ~N; ~ζ))



In favourable circumstances, D- and F-term conditions are solved
by a “cut”,

φbi ′j ′ = 0

for specific pair(s) i ′j ′, and then imposing the equations

∂W (φaij)

∂φbi ′j ′
= 0, b = 1, . . . , |κi ′j ′ |

Then the virtual dimension can be determined as

dim(MQ( ~N, ~ζ)) =
∑
ij 6=i ′j ′

|κij |NiNj −
∑
i ′j ′

|κi ′j ′ |Ni ′Nj ′ −
∑
i

N2
i + 1

This depends on the superpotential, and is related to perfect
matchings of the associated brane tiling.



Attractor stability

The “attractor stability” for a dimension vector ~N = (N1,N2, . . . )
is

ζai = −κij N j

This follows from the supergravity approach to BPS quivers.

Mathematically, this stability conditions is known as
“self-stability”, Bridgeland (2016)



Exceptional collections provide a way to associate a BPS quiver to
an algebraic surface.



Exceptional collections

A sheaf E on X is exceptional if

Ext0(E ,E ) ∼= C, Extk(E ,E ) = 0, k > 0

An exceptional collection on X is an ordered set of exceptional
objects C = (E 1, . . . ,E r ), such that

Extk(E i ,E j) = 0, ∀k ≥ 0, 1 ≤ j < i ≤ r

An exceptional collection is full, if ch(E i ) generate K (X )
An exceptional collection is strong, if Extk(E i ,E j) = 0 for all i , j
and k > 0



Exceptional collections

Not all surfaces gives rise to exceptional collections. Strong, full
exceptional collections are known for

• toric surfaces, including P2

• del Pezzo surfaces dPk , 1 ≤ k ≤ 8

• pseudo del Pezzo surfaces PdPk , 1 ≤ k ≤ 6



Exceptional collection and quivers

To determine the quiver, one determines a dual collection
C∨ = (E∨1 , . . . ,E

∨
r ) with

χ(E i ,E∨j ) = δij

The dual collection is exceptional and full, but not strong.

Quiver:

• The nodes correspond to the elements of C∨

• (Net) number of arrows:

κij = 〈γi , γj〉 =

∫
X

(ch((E∨j )∗)ch(E∨i )−ch((E∨i )∗)ch((E∨j ))) Td(X )

• Superpotential follows from algebraic-geometric or
string-theoretic techniques
Aspinwall, Katz (2004), Hanany, Seong (2012), . . .



Quiver for P2

1

2

3

with potential

W =
∑

(αβγ)∈S3

sgn(αβγ)φα12φ
β
23φ

γ
31



Quiver for P2

The standard strong collection is C = (O,O(H),O(2H)), which
leads to the following Chern characters for the dual collection E∨i :

γ1 = (1, 0, 0) ∈ H0(P2)⊕ H2(P2)⊕ H4(P2)

γ2 = (−2, 1, 1/2)

γ3 = (1,−1, 1/2)

Note γ1 + γ2 + γ3 = (0, 0, 1) corresponds to an (anti) D0-brane.

The Chern character of an arbitrary instanton can be written as

γ = −(N1γ1 + N2γ2 + N3γ3), Nj ≥ 0



For X = P2: κ12 = κ23 = κ31 = 3

The FI parameters ζi are chosen such φa31 = 0 (Beilinson monad)
⇒ ζ1 ≥ 0 ≥ ζ3

Moreover, quiver stability should agree with Gieseker stability of
the sheaves for polarization J.

Then there is an equivalence

MQ( ~N, ~ζ) ∼=M(γ; J),

with ~ζ determined by ~N and J



Canonical stability

We call the polarization J0 = c1(X ) the “canonical polarization”.
This corresponds to the “canonical stability” for the quiver

ζci = ρ κij N
j + ηi

with ρ� 1. The first term on the rhs corresponds to the leading
term for Gieseker stability, and the ηi to the subleading term.

Note that the first term differs by a sign from the attractor
stability

The requirement on ζc1,3 implies for the first Chern class
⇒ −N ≤ c1 ≤ 0, which can always be reached using tensoring by a
line bundle, which is an isomorphism of moduli spaces.



Question: Can we reproduce the invariants χy (M(γ; J)) from the
quiver?

We have taken the approach of the attractor flow trees.
Denef (2001), Denef, Green, Raugas (2001), Denef (2002), Denef, Moore (2007), JM (2011), Alexandrov, Pioline

(2018), Argüz, Bousseau (2021),. . .

We use the “flow tree formula” for general number of centers by
Alexandrov, Pioline (2018), proven by Argüz, Bousseau (2021).
See the talks by Bousseau



Flow trees are originally developed for string theory
compactifications on R4 × Y , with Y a compact CY 3-fold.
N = 2 supergravity in R4 contains an intricate BPS spectrum of
of black hole bound states.

Denef (2002,. . . ), Denef, Moore (2007), JM, Pioline, Sen (2011,. . . ),. . .



A flow tree is a 1-dimensional approximation to the 3-dimensional
flow of the moduli (=stability conditions) under the attractor
mechanism.

t 1

 L

v1

t

 R

vL vR=vRLU

vRL



t 2 t 3 t 4 t 5

v0

The (refined) index Ω(γ, y ; t) can be expressed in terms of
attractor indices Ω∗(γ). Thus the attractor points t∗(γ) must exist
in the space of stability conditions.



A vertex v represents a wall for ΓvL and ΓvR , thus the central
charges satisfy

Im(Z (ΓvL, tv ) Z̄ (ΓvR), tv )) = 0

Furthermore, for a non-vanishing contribution, we have the
following conditions at each vertex:

• κLR Im(Z (ΓvL, tvU) Z̄ (ΓvR , tvU)) > 0

• Z (ΓvL, tv ) Z̄ (ΓvR , tv ) > 0

In favourable cases where the 2nd condition is automatic, the flow
can be determined from node to node without calculating the
explicit flow along the edges.



Result: All computed invariants for rank |N| ≥ 1 sheaves on P2

are compatible with Ω∗( ~N) = 0 (for those ~N occuring in the flow
trees), except Ω∗(γj) = 1 for j = 1, 2, 3. The flow tree approach
could be applied for

∑
i Ni ≤ 8, which included moduli spaces for

rank N ≤ 5.

[N; c1; c2] ~N Ωc (~N)

[1; 0; 2] (1, 2, 2) y4 + 2y2 + 3 + . . .

[1; 0; 3] (2, 3, 3) y6 + 2y4 + 5y2 + 6 + . . .

[2; 0; 3] (1, 3, 3) −y9 − 2y7 − 4y5 − 6y3 − 6y − . . .

[2;−1; 2] (1, 2, 1) y4 + 2y2 + 3 + . . .

[2;−1; 3] (2, 3, 2) y8 + 2y6 + 6y4 + 9y2 + 12 + . . .

[3;−1; 3] (1, 3, 2) y8 + 2y6 + 5y4 + 8y2 + 10 + . . .

[4;−1; 4] (1, 4, 3) y14 + 2y12 + 5y10 + 10y8 + 18y6 + 28y4 + 38y2 + 42 + . . .

[4;−2; 4] (1, 3, 1) y5 + y3 + y + . . .

[4;−2; 5] (2, 4, 2) −y13 − 2y11 − 6y9 − 10y7 − 17y5 − 21y3 − 24y − . . .



To understand this, we realized that the virtual dimension for these
~N at the attractor stability is negative:

dim(MQ( ~N, ~ζa)) < 0 =⇒ Ω∗( ~N) = 0

Thus we could maybe say that this is a “genteel” spectrum?
Bridgeland (2016)



Torsion sheaves (with N = 0)

The D0-brane correspond to dimension vector ~N = (1, 1, 1) =: δ.
It lies in the kernel of the anti-symmetric form 〈γ,−〉, and does
not occur in the flow trees for N ≥ 1 sheaves. Then,

Ω∗(nδ, y) = −y−1(y4 + y2 + 1),

in agreement with the compact cohomology of KP2

Mozgovoy, Pioline (2020), Mozgovoy (2021), Descombes (2021)

Thus we could say that the P2 quiver is “almost genteel”?

A similar structure was also found by Cordova, Neitzke (2013) for
framed BPS states.



Other surfaces

We did a similar analysis for other complex surfaces with an
exceptional collection:

• Hirzebruch surfaces Fm (non-Fano for m ≥ 2) ⇒ different
phases

• del Pezzo surfaces dPk= P2 blown-up at a k ≤ 8 points, toric
for k = 2, 3 but non-toric for k ≤ 8

• pseudo-del Pezzo surfaces PdPk , k ≤ 6

In agreement with calculations based on sheaves where available.



Hirzebruch surface F0 with base curve C and fiber F

Phase I:
Strong, full exceptional collection C = (O,O(C ),O(F ),O(C + F ))

1

2

3

4

with cubic superpotential

W = φ1
12φ

1
24φ

4
41 − φ1

12φ
2
24φ

3
41 − φ2

12φ
1
24φ

2
41 + φ2

12φ
2
24φ

1
41

− φ1
13φ

1
34φ

4
41 + φ1

13φ
2
34φ

2
41 + φ2

13φ
1
34φ

3
41 − φ2

13φ
2
34φ

1
41



Hirzebruch surface F0 with base curve C and fiber F

Phase II:
Strong, full exceptional collection
C = (O,O(C ),O(C + F ),O(2C + F ))

1 2

34

with quartic superpotential

W =
∑

(αβ)∈S2

∑
(γδ)∈S2

sgn(α, β) sgn(γ, δ)φα12 φ
γ
23 φ

β
34 φ

δ
41 . (1)



Hirzebruch surface F0 with base curve C and fiber F

Both quivers reproduce the results based on sheaves with rank
N > 0 in their regime of validity, and with all attractor invariants
vanishing except those corresponding to the nodes.
For D0-branes, the attactor indices are

Ω∗(nδ) = −y−1(y4 + b2(X )y2 + 1)

Mozgovoy, Pioline (2020), Descombes (2021)



More intricate quivers appear for higher del Pezzo’s. For example
for dP3:

3

2

65

1 4



Conclusion

We have seen that for surfaces with a strong, full exceptional
collection, attractor flow trees are an efficient and interesting
technique to evaluate BPS indices.

The input of attractor indices Ω∗(γ) makes it possible to
potentially apply the formalism more generally, such as other
surfaces, CY 3-folds,. . .



Thank you!


