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BPS Black Holes

BPS black holes provide a rich context for the study of quantum
gravity. While the Cardy formula gives an accurate microscopic
derivation of the entropy of large black holes, the existence of
bound states of black holes diffuses the spectrum of single center
N = 2 black holes.



BPS Black Holes

This is in particular the case for “scaling black holes”, which are
solutions of supergravity which can be adiabatically connected to
the solution with a single black hole singularity by scaling the
distances between the centers. We will consider in this talk the
spectrum of scaling black holes with three centers.



Attractor mechanism

The vectormultiplet scalar fields of are position dependent and
required to satisfy the attractor equations in the near-horizon
AdS2 × S2.

For single center black hole:
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BPS bound states of N = 2 supergravity

γ1 γ3

γ2

r13

N BPS black holes with charges γi located at ~ri in R3

Static BPS bound states exist due to interplay between
gravitational attraction and electro-magnetic repulsion

=⇒ Bound states are static and therefore part of the 1-particle
Hilbert space HBPS(γ; t)



Denef equations

N = 2 BPS equations of motion require the distances
rij = |~ri − ~rj | ∈ R+ to satisfy:

N∑
j=1
j 6=i

γij
rij

= ci ({γk}; t)

- γij = 〈γi , γj〉 ∈ Z: Dirac-Schwinger-Zwanziger innerproduct

- ci ({γj}; t) ∈ R: stability parameters depending on Z (γi , t)
Denef (2000)

Phase space MN({γi}, {ci}):

- parametrizes ~ri ∈ R3, i = 1, . . . ,N

- has dimension 2N − 2

De Boer, El-Showk, Messamah, Van den Bleeken (2008)



Denef equations: Two aspects

Wall-crossing:
Solutions might decay or recombine upon varying ci ∈ R:
Denef (2000); Denef, Moore (2007),. . .

For example N = 2: lim
c1→0

r12 = lim
c1→0

γ12

c1
= ±∞

Scaling solutions:
Centers could get arbitrarily close, de-
pending on {γi}
Bena, Wang, Warner (2006); Denef, Moore (2007),. . .

For example N = 3: If γ12 + γ23 ≥ γ31,
and cyclic perm. ⇒

lim
λ→0

rij(λ) = λγij +O(λ2) ∈ M({γi}, {ci})

1

r13(λ)

r12(λ)

r23(λ)

λ→
0



Invariants

We have various types of BPS indices occurring:

• refined BPS index Ω(γ, y ; t)

• BPS index Ω(γ; t) = Ω(γ; 1, t)

• refined single-centered invariant ΩS(γ, y)

• single-centered invariant ΩS(γ) = ΩS(γ, 1)

• total invariant

ΩT (γ, y) = ΩS(γ, y)+
∑

∑n
j=1 mjγj=γ

H({γj ,mj}, y)
n∏

i=1

ΩS(γi , y
mi )

with H({γj ,mj}, y) determined by the “minimal modification
hypothesis”.



Invariants

We also need a numerical counterpart to ΩT (γ, y), however
limy→1 ΩT (γ, y) diverges generically

We use instead the prescription

f (y)

(y − y−1)`
−→ 1

2` `!

(
y
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)`
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y=1

,

for f (1) 6= 0.



Decomposition formula

In terms of these invariants, the Ω(γ, y , t) can be expressed as

Ω̄(γ, y ; t) =
∑

∑
i Niγi=γ,
γi 6=γj ,i 6=j

gC ({Niγi}; {ci (t)}, y)
∏
j

Ω̄T (γj , y)Nj

Nj !

JM, Pioline, Sen (2010)

gC ({γi}, {ci}, y) is the (twisted) Dirac index of the space
MN({γi}, {ci})



Coulomb branch: Localization

Evaluate integral by localization with respect to J3
Duistermaat, Heckman (1982); Berline, Vergne (1985);. . .

⇓
Sum over isolated fixed points ∈ MN({γi}, {ci}) of J3

The solutions which contribute are of the form:

γ1 γ3γ2

z-axis
J3

JM, Pioline, Sen (2011)



Coulomb branch formula

Fixed point formula:

gC ({γi}, y ; {ci}, y) =
(−1)

∑
i<j γij+N−1

(y − y−1)N−1

∑
p∈{f.p. of J3}

s(p) y2J3(p)

• angular momentum:

J3(p) =
1

2

∑
i<j

γij sign(zj − zi )

• sign:

s(p) = sign

(
det

(
∂2W

∂zi∂zj

))
with W ({zi}) = −

∑
i<j γij sign(zj − zi ) log |zi − zj | −

∑N
i=1 cizi



Coulomb branch formula: Example

Example: γi , i = 1, . . . , 3, such that γ12, γ13, γ23 > 0,
c3 < c2 < 0 < c1

• Fixed points have orderings:

{1, 2, 3; +}, {2, 1, 3;−}, {3, 1, 2;−}, {3, 2, 1; +} ,

with ± = s(p)

• Enumerate:

gC ({γi}, y ; {ci}) = (−1)γ12+γ23+γ13 (y − y−1)−2(
yγ12+γ13+γ23 − yγ12−γ23−γ13 − yγ13+γ23−γ12 + y−γ12−γ13−γ23

)



Minimal modification hypothesis

With loops/generic superpotential:

- scaling solutions are possible

- explicit algorithm, recursive in the number of centers

- sum over regular fixed points 6= SU(2) character

Problem: What is the contribution of the scaling fixed point?

For 3-center, determine H such that

gC ({γi}, y ; {ci}, y) + H({γi}, y)

is an SU(2) character, with “minimal amount” angular momentum.



Minimal modification hypothesis

Consider a 3-center scaling black hole. Let a = γ12, b = γ23 and
c = γ31.

H({γj}, y) =

{
− 2

(y−y−1)2 , if a + b + c ∈ 2Z,
y+y−1

(y−y−1)2 , if a + b + c ∈ 2Z + 1,

Numerical version:

H({γj}) =

{
0, if a + b + c ∈ 2Z,
1
4 , if a + b + c ∈ 2Z + 1,

ΩT (γ) = ΩS(γ) +

{
0, if a + b + c ∈ 2Z,

1
4

∏3
j=1 ΩS(γj), if a + b + c ∈ 2Z + 1.



Black Hole Bound States

We have

gC
(
{γj}; {c∗j }

)
=

(−1)a+b+c

4

[
F ∗(123) (a + b − c)2 + perm

+
1

4
A δa,c δb,c a

2

]
with

F ∗(123) =
1

4
(1 + sgn(a− c) sgn(b − c) + sgn(b − c) sgn(c − a− b)

+ sgn(c − a− b) sgn(a− c) ).

A above is introduced to deal with exceptions where arguments of
sgn’s vanish. We will see that modularity provides a definite
answer.



Black Hole Bound States

To enumerate scaling configurations, we also introduce the
quantity fC which determines whether a scaling configuration
exists for these charges or not,

fC
(
{γj}; {c∗j }

)
=

(−1)a+b+c

4
[1 + sgn(a + b − c) sgn(a− b + c) + perm

+A1 δa,0 δb,c + perm]

The A`, ` = 1, 2, 3 is introduced to deal with exceptions where
arguments of sgn’s vanish. We will see that modularity provides a
again a definite answer.



D4-D2-D0 Black Holes

Let us review a few aspects of D4-D2-D0 black holes, with
D4-brane charge P, D2-brane charge Q and D0-brane charge Q0,
abbreviated to γ = (P,Q,Q0).

Let Dabc , a, b, c = 1, . . . , b2(X ) be the triple intersection numbers
of the Calabi-Yau X , then

• Dab = DabcP
c gives us quadratic form on the lattice Λ, and Q

takes values in Λ∗, with quadratic form Dab = (D−1)ab

• Λ has signature (1, b2 − 1).



The Kähler modulus is t = B + i J

The large volume attractor point is

tλγ = DabQb + iλPa,

with sufficiently large λ� 1.

Attractor invariants (or MSW invariants)

Ω(γ, tλγ )

These invariants are unchanged under the “spectral flow”
symmetry, such that these only depend on the class of Q ∈ Λ∗ in
Λ∗/Λ. This class is denoted by µ.



Partition function

Partition function is for fixed P, and admits a theta series
decomposition due to a symmetry of the attractor invariants:

ZλP(τ,C , t) =
∑
Q,Q0

Ω̄(γ, tλγ ) e−τ2M(γ,t)+2πiC0Q0+2πiC .Q

=
∑

µ∈Λ∗/Λ

hP,µ(τ) Θµ(τ, τ̄ ,C ,B)

with τ = C 0 + iτ2, and

hP,µ(τ) =
∑
Q0

Ω̄(γ, tλγ ) q−Q0+(µ+P/2)2/2

and

Θµ(τ, τ̄ ,C ,B) =
∑
Q∈Λ∗µ

(−1)P.QqQ̂
2
+/2q̄−Q̂

2
−/2e2πiC .(Q−B/2) ,

Gaiotto, Strominger, Yin (2006); De Boer et al (2006); Denef, Moore (2007)



Partition function

S-duality action on the Type IIB hypermultiplet geometry requires
that hP,µ transforms as a mock modular form ⇒ hP,µ can be

completed with non-holomorphic terms to ĥP,µ, such that the
latter transforms as a vector-valued modular form. The depth of
the mock modular form corresponds the maximal length of a
partition of P.
Alexandrov, Banerjee, JM, Pioline (2016/7), Alexandrov, Pioline (2018),. . .



Transformation law

S : ĥP,µ(−1/τ,−1/τ̄) = − 1√
|Λ∗/Λ|

(−iτ)−b2/2−1ε(S)∗e−iπP
2/2

×
∑

δ∈Λ∗/Λ

e−2πiδ.µĥP,δ(τ, τ̄) ,

T : ĥP,µ(τ + 1, τ̄ + 1) = ε(T )∗e iπ(µ+P/2)2
ĥP,µ(τ, τ̄),

We also introduce

ẐλP(τ, τ̄ ,C , t) =
∑

µ∈Λ∗/Λ

ĥP,µ(τ, τ̄) Θµ(τ, τ̄ ,C ,B),

which transforms as a modular form.



Charge Lattices for Bound States

We are interested in n-center bound states with non-vanishing
D4-brane charge Pj , j = 1, . . . , n with associated lattices Λj .

This gives rise to an (n b2)-dimensional lattice Λ = Λ1 ⊕ · · · ⊕ Λn,
with quadratic form ~D = diag(D1, . . . ,Dn)

The total electric charge Q =
∑

j Qj is distributed over the n
constituents. We therefore want to decompose Λ in terms of a
lattice Λ associated to the total charge, and a lattice Λ associated
to the charge distribution. Let Λ ⊂ Λ be defined by

Λ = {~k = (k , k , . . . , k) ∈ Λ | k ∈ Zb2},

and Λ ⊂ Λ

Λ =

~k ∈ Λ

∣∣∣∣∣∣
n∑

j=1

Djkj = 0

 .



Charge Lattices for Bound States

The glue group is the coset Λ/(Λ⊕ Λ). Its number of elements is

Ng =

√
det(D) det(D)∏n

j=1 det(Dj)
.

The order of the quotient group (Λ∗/Λ)/h(G ) is

Nq =
det(D)

Ng
.

The quadratic form on Λ∗ is

Q2 = −Q2 +
∑
j

(Qj)
2
j

Λ has signature (n − 1) (1, b2 − 1)



Partition function for scaling black holes

Partition function for total invariants:

hTP,µ(τ) =
∑
Q0

Ω̄T (γ, tλγ ) q−Q0+(µ+P/2)2/2

The relation between attractor and total invariants leads to the
decomposition

hP,µ(τ) = hTP,µ(τ)+
∑
n>1

∑
∑n

j=1 Pj=P

gC ({γj}, {cλj })
| Aut({γj})|

qQ
2/2−

∑
j (Qj )

2
j /2

n∏
j=1

hTPj ,µj
(τ)



Then, the partition functions for scaling solutions reads:

h3T
{Pj},µ(τ) =

∑
µj∈Λ∗

j
/Λj , j=1,2,3,

µ1+µ2+µ3=µ

hTP1,µ1
(τ) hTP2,µ2

(τ) hTP3,µ3
(τ) Ψµ(τ) ,

with
Ψµ(τ) =

∑
Q∈Λ∗µ

gC ({γj}, {cλj }) q−Q2/2,

with Λ∗µ = µ + P/2 + Λ with µ ∈ Λ∗



Partition function for scaling solutions

The number of terms in the sum for h3T
{Pj},µ is Nq.

We can assume that hTPj ,µj
transform as earlier stated, by requiring

that the Pj are irreducible.

Thus we need to understand the transformations of Ψµ, to
determine those of h3T

{Pj},µ

We also introduce

Φµ(τ) =
∑

Q∈Λ∗µ

fC ({γj}, {cλj }) q−Q2/2

i.e. the generating function of scaling configurations.



Convergence

For three centers, Λ has signature (2, 2b2 − 2). There is a general
approach for the convergence and modular completion of functions
such as Φµ and Ψµ

Consider
Θµ[K](τ ; L) =

∑
x∈L+µ

K(x) q−B(x)/2

Let V = {V1, . . . ,VN} be a collection of positive vectors. The
kernel reads

K(x ,V) =
1

4

w(V) +
N∑
j=1

sgn(B(x ,Vj))sgn(B(x ,Vj+1))

 ,

with

w(V) = −
N∑
j=1

sgn(B(v ,Vj))sgn(B(v ,Vj+1)),

Alexandrov, Banerjee, JM, Pioline (2016); Funke, Kudla (2017),



Convergence

Conditions for convergence:

B(Vj ,Vj) > 0,

B(Vj ,Vj)B(Vj+1,Vj+1)− B(Vj ,Vj+1)2 > 0,

B(Vj ,Vj)B(Vj−1,Vj+1)− B(Vj ,Vj−1)B(Vj ,Vj+1) < 0.



Convergence

The functions Φµ and Ψµ are of the right form to apply these
general results.
To apply this general formalism to Φµ, we determine the vector Ca

such that (Ca,Q) = a for all Q ∈ Λ and similarly for Cb and Cc ,

Ca = (−P2,P1, 0),

Cb = (0,−P3,P2),

Cc = (P3, 0,−P1),

We then have for Φµ, C1 = Ca + Cb − Cc , C2 = Ca − Cb + Cc and
C3 = −Ca + Cb + Cc , and convergence follows. The proof for Ψµ

is similar



Generalized error functions

Let E2 be the 2-dimensional generalization of the error function
defined by:

E2(α; u1, u2) =

∫
R2

e−π(u1−u′1)2−π(u2−u′2)2
sgn(u′2) sgn(u′1+α u′2) du′1 du

′
2

If we rescale the arguments, it satisfies

lim
λ→∞

E2(α;λ u1, λ u2) =

{
sgn(u1) sgn(u1 + αu2), (u1, u2) 6= (0, 0)

2
π arctan(α), (u1, u2) = (0, 0)

E2 satisfies the Vignéras equation ensuring modular properties,
when used in the kernel of a theta series.



Modular completion

Thus the modular completions, Φ̂µ and Ψ̂µ, of Φµ and Ψµ is
obtained by replacing

sgn(C1.x) sgn(C2.x) +A δ(C1.x) δ(C2.x)

by E2(α; u1, u2), with

α =
(C1.C2)√

C 2
1 C 2

2 − (C1.C2)2

u1 =
√

2τ2
(C1⊥2.x)

|C1⊥2|

u2 =
√

2τ2
(C2.x)

|C2|



We can fix the constants A, A` introduced earlier, by requiring that
the added non-holomorphic terms are subleading, i.e. vanish in the
τ2 →∞ limit.

• For Ψ̂µ, we find that A = 1 generically, in agreement with the
physically preferred value.

• For Φ̂µ, we find that A` can be irrational. While peculiar, this
is maybe not so worrisome since Φµ is not a proper physical
partition function.



Completion of Φµ

Split holomorphic and non-holomorphic part:

Φ̂µ(τ, τ̄) = Φµ(τ) + RΦ
µ (τ, τ̄)

with

RΦ
µ(τ, τ̄) =

∑
`=1,2,3

i

∫ i∞

−τ̄
dw

Θ̂µ+ρ(τ,−w ; L⊥` , {C`−1C`+1}) Υµ+ρ(w ; C2
` ,K · C`)√

−i(w + τ)
.



Modular completion

As a result, we find that the completion

ĥ3T
{Pj},µ

transforms identically ĥP,µ.

Therefore, in the decomposition

ẐλP = ẐT
P + Ẑ3T

P + . . .

each term has the same modular properties.



Case study

Let us consider a concrete example: let X be the K3 fibration with
intersection numbers with h1,1 = 2 and h2,1 = 86, and intersection
numbers

d111 = d112 = 0, d122 = 4, d222 = 2,

Choose charges:

P1 = P2 = (0, 1), P3 = (1, 1)



q-series for Φµ

Let µ = (0, 0), then

Φµ = 2q6 + 4q20 + 6q24 + 4q30 + 4q44 + 4q50 + 8q52 + 2q54 + 12q56 + 4q60

+ 4q64 + 4q68 + 4q70 + 12q80 + 2q88 + 8q90 + 8q92 + 8q94 + 14q96 + 16q100

+
(A1 + A2 + A3 + 1)

2
+ (A1 + A2 + A3 + 3)(q8 + q32 + q72) + . . .

with

A1 =
2

π
arctan(−5/

√
11),

A2 = A3 =
2

π
arctan(−1/

√
8),



q-series for Ψµ

Let µ = (0, 0):

Ψµ = 16q30
(
1 + 2q22 + 4q34 + q40 + 2q60 + 8q62 + 2q64 + 4q70

)
+. . .



More centers?

While technically involved, we expect that these results can be
generalized to scaling black holes with more centers. This would
lead to higher depth mock modular forms.



Thank you!


