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Modular forms

Definition: A modular form of weight w is a holomorphic function
f:H - C, which

b) as follows:

1. transforms under an SLy(7Z) matrix (i d

f("”Z) = (cr+d)"F(r),

2. and whose growth for T — oo is such that

CT +

ar+b
li dy™"f
T—Iﬂlo(c’r-i— ) (CT+d) (*)

is bounded for all (i 3) € SLy(Z).

= f has a Fourier series:

f(r)=Ya(mg",  q=e"



Example 1

Eisenstein series k € 2N, k > 4:

Eu(r) =1+ 7"
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Divisor sum:

n=1

or(n) =Y. d"
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Plot of coefficients of E,4

Tesselation of unit disc from Ej.

C. Feller, Summer Project TCD, 2018
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Example 2

The Discriminant function A : H — C is an example of a cusp form:

A(r) =g f_ﬁla g
= ZC(H) q"

4x10"2f

-2x10"2}

_4x10"2}

Ramanujan conjecture (proven by Deligne) for bound on c(n):

lc(n)] < og(n) n(1271)/2



Example 3

Example of a weakly holomorphic modular form:

1 oo
A - 2 dn)g”
A(T) ngl
Hardy-Rademacher-Ramanujan formula for growth of d(n):
d(n) ~ etV
Crucial for the understanding of the microscopic entropy of CFT's

and supersymmetric black holes cardy:...Strominger, Vafa (1996);. . .; Dabholkar

(2004),....




Mock modular forms

Let

g (r,7) = ~2i Lm —(_if”‘f;‘/j))w dv, (%4)

Definition: A mock modular form of weight w is a holomorphic
g-series f : H — C, such that its completion

f(r,7)=f(r)+g*(r,7)

1. transforms as a modular form of

weight w, INFINITY
2. g is the image under the map (%) —
of the complex conjugate g of a

modular form with weight 2 — w,
3. The combination (*) is bounded for f.

Release poster for 2015 movie
portraying Ramanujan’s life.

Ramanujan; Zwegers (2008); Zagier (2010);. ..



Example 4

Generating function of Hurwitz class numbers H(n),

hu(r) =Y H(4n-p)g" % p=0,1

n>0

These functions are mock modular forms of weight 3/2 for the
congruence subgroup °(4), and with

go(7T) =v2(27), g1(7) = 93(27)

Zagier (1975)



Example 5

Mock modular form of weight 1/2 for SLy(Z) central to the
Mathieu Moonshine phenomenon:

F() = q /8(-2+90q + 462¢> + 15404° + ...

with 3
g(7) =n(7)
Note this function is weakly holomorphic.

Eguchi, Hikami (2009), Dabholkar, Murthy, Zagier (2012),...



Four-manifolds and lattices

Let X be an oriented, smooth, compact four-manifold. We assume
X is simply connected (thus by = dim(H(X)) = 0).

H?(X,Z) together with the intersection form
Blkika) = [ kinks,  kiaeHA(X,2)

gives rise to an integral, uni-modular lattice L (the image of
H?(X,Z) in H3(X,R))

The lattice has signature (b3, b5 ).

For by =1, let J be the normalized generator of the unique
self-dual direction in H2(X,R). It provides the projection of k € L
to (LeR)",

k. =B(k,J)J



Instantons solutions in Yang-Mills theory

Let P — X be a G-principal bundle for a Lie group G.

Let A= A,dx" € Q'(X,ad(P)) be the connection 1-form with
associated field strength F = dA+ AA A.
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Instantons solutions in Yang-Mills theory

Instantons are the anti-self-dual solutions
F=-xF
They are characterized by topological numbers:

Instanton number:

1
k:QfXTr[F/\F]eZ

't Hooft flux: )
1= 2u= —Tr[F]e H3(X,Z)
2w



Moduli spaces

The moduli space of instantons is defined as:
My = {F = -+ F|modulo gauge transformations}
Virtual dimension for G = SU(2):
vdimg(My ) =8k —3(b; +1)
M, may be non-compact or have singularities

The spaces M ,, have been crucial for the classification of
four-manifolds up to diffeomorphism.

Rigorous mathematical results are available through the
correspondence of the instantons and semi-stable vector bundles by
Hitchin-Kobayashi and Donaldson-Uhlenbeck-Yau



Instanton partition functions are generating series

Z,(Y) = gcu(m v«

where the ¢, (k) is a topological invariant of M, x and Y a formal
variable for the moment

Examples:

e Donaldson invariant:

Din(px)= [ 1o(p) App(x)"

with the Donaldson map yip : H.(X) > H* (M )
e Euler characteristic: x(M,, ) = Zj(—l)j bj(M k)



Yang-Mills action:
S[A]- -+ f Tr[F A %F] 4~ Te[F A F]
- g2 Jx 8m2

Complexified coupling:

0 Armi
r=—+ ey
2 g2

S-duality is an equivalence of the theory under
e i7—>T7+1

e Si7—>-1/1, G- Lg



Exact non-perturbative results are often difficult to achieve in
quantum field theory. Supersymmetric theories contain more fields,
which however reduce quantum effects, and allow for exact results.

Path integrals localize on Q-fixed equations of topologically
twisted A =2 and NV = 4 supersymmetric theories. Instantons solve
the Q-fixed equations.

The physical approach provides a useful viewpoint on the
mathematical invariants mentioned before. Together with
S-duality, this provides an heuristic explanation for the role of
modularity for instanton partition functions.

The analysis for ' =2 and N = 4 are different, but mock modular
forms play a key role for both.



N =2 supersymmetry: u-plane integral

The physical path integral leads to the finite dimensional u-plane
integral for four-manifolds with by = 1.

Witten (1995); Moore, Witten (1997); Losev, Nekrasov, Shatashvili (1997), ...

For the simplest case, pure A/ =2 supersymmetric SU(2) YM, u is
the Hauptmodul for the congruence subgroup °(4) € SLy(7Z),

u(T) _lz?z(T)‘l +293(7')4
A2 2 95(7)2093(T)?2

1
:g(q_1/4 +20g'* - 62¢°/* + 216¢°* + O(q"/*)),

with 19; Jacobi theta series and A the scale of the quantum field
theory.

Seiberg, Witten (1994); Matone (1996); Nahm (1996),. ..



u-plane versus H/[°(4)

I T T2 T:{

Partitioning of the u-plane by the Fundamental domain for H/I°(4)
images of F; in H/I°(4)




The u-plane integral takes the form
J _ — J —
®2[0] = /H oy I AT OV (7 7)

with
o y(T) = %A(U)X(X)B(u)”(x) = q_% +...
e Sum over fluxes:
Wl (r 7)o L Bk J) g <22 K212
/,L(T7T) - Z ( ’ )q q
kel+p
with y = Im(7)

Moore, Witten (1997)



Efficient evaluation using mock modular forms for all X with b3 =1
Malmendier (2011); Malmendier, Ono (2012); Korpas, JM (2017); Korpas, JM, Moore, Nidaiev (2019); JM, Moore

(2021)

Construction of a suitable anti-derivative:

8//-:(7',7_')

=l (77
87—_ ,LL(T7T)7

Then
¢i[0] =[Owv(1) F(7)] 0 + contributions from other cusps,

with F(7) = ¥, c(n) g" the holomorphic part of F(r,7)



Explicit results for X = P2

Choose for X the complex projective plane P2

Let O = u’ ~ up(€p)

Then
] 8 0] ,[u]
0
2 19
4 680
6 29557
8 1414696

In agreement with results from Ellingsrud, Géttsche (1995) and Géttsche, Zagier (1996) for P2



Large charge correlators

With these modular expressions, we can study the asymptotics for
large ¢, or “large charge” correlators

We find experimental evidence that
Jr, L C
* Culv]~ g
e = Evidence that ®’[e?P“] is an entire function of p



Other observables and physical theories

Surface operators appear as as (holomorphic) elliptic variables in
J

Vi

Background fluxes can be included for each U(1) subgroup of the

global symmetry group. These couplings lead to non-holomorphic
elliptic variables.

Gives rise to:
e an elliptic refinement of F(7):

3/2 1/2

F(r,z) = qil/g(fwl/2 w2y (716W2 +19w™° — 64w + 26w’ “ + 160 + palindromic terms)qg +...)

with w = e2™2_ Do these coefficients have a Moonshine
interpretation? Aspman, Furrer, JM (2023)

e many explicit results with similar “large charge” asymptotics
questions as above

e evaluation of the u-plane integral with elliptic variables is
subtle



N =4 supersymmetry (Vafa-Witten theory)

The partition function for G = SU(N) of this theory takes the form

Zj (r) = Y bu(k) g Mxor
k>0
with
b (k) = x(Micp)
Physical expectation: Z/)v< transforms as a weakly holomorphic
modular form of weight —x(X)/2

Vafa, Witten (1994)



NB My, includes pointlike, singular instantons. Let N ,, be the
moduli space of smooth instantons

As a result of the relation between these moduli spaces, Z,\),( can be
expressed for an algebraic surface X as

fiy (7)

ZA)I((T):W

with 1 the Dedekind eta function and

(1) = . en(k) ¢*
k>0

and

en (k) = x(Niw)

Gottsche (1998)

Motivates the analysis of both by (k) and cy(k)



G = SU(2) and X =P?

Asymptotics of by follow from weak holomorphicity of Z,f,(:
bN(k) N e7n/2kNx(X)/3

Generating functions fy are determined for arbitrary N in terms of
(generalized) Appell functions using algebraic-geometric
techniques.

Klyachko (1991), Yoshioka (1994), Vafa, Witten (1994), Kool (2010), Weist (2010), JM (2010), (2014), (2017)

Exact Rademacher type formula for by, N =2,3 and X = P2
Bringmann, JM (2013), Bringmann, Nazaroglu (2019)
For SU(2):

f2,u(7') = 3hu(7')

with hg the generating function of Hurwitz class numbers
= f» is a mock modular form



Plot of coefficients for N =2

Plot of the coefficients H(4n — 1) as function of n. The red dots
represent the coefficients © = 0, while the green ones represent the
coefficients p = 1.

The distribution of the coefficients appears chaotic and highly
scattered. On average the coefficients appear to grow as a power
law, in agreement with the growth for an Eisenstein series.

Thus almost all the cohomology of M, is due to the point-like
instantons

JM, Chattopadhyaya (2023)



N=3

The first few terms of the g-expansions of f3 ,(7) are:

1
fo(r) = §—q+3q2+...
f3,1(7)

f2(7) = 3¢°% +15¢%/% + 363 + ...
f3,u are examples of a mock modular form of depth 2 and weight 3.

The modular completion reads

_ i (3 ieo B, (7,-v) ©,,2(3v)
=) - (2 / : 0 dv,
30 = Fou(T) w(z)yzzo,1 = (Ci(venyz Y

which involves an iterated integral

Manschot (2019). See also Alexandrov, Banerjee, JM, Pioline (2018); Bringmann, Kaszian, Milas (2019).



We plot the coefficients bz o(n) of 39
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The green dots represent the coefficients for odd n and the red

dots for even n

We observe a fairly regular power law growth ~ n?, in agreement

with that of Eisenstein series of weight 3.



Mock cusp form

Definition: A mock cusp form is a mock modular form f (1) such
that the combination (*) vanishes for all elements of SLy(Z). Thus
in particular the constant term of the Fourier series of f vanishes.

The weight 3 Eisenstein series m,,,

mo(T) %+8q+30q2+...
mi(r) = 3¢%°+24¢°3 +51¢°° +

transforms identically under SLy(Z) as f3,

Their difference is the mock cusp form S,:

So(T)

Si(7)

> so(n)q" =3q+9¢° +21¢° +...,
n

5/3 ,

> si(n)q" =q**+7q
n



Plot of coefficients sy(n) of So
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The green dots represent the coefficients sp(n) for odd n and the
red dots for even n
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Plot of prime coefficients sp(p) of So

The growth of the coefficients is surprisingly regular. The least
square fits for the primes p are

6.7547p%2, p=3n+1,
so(p) {3.578p3/2, p=3n-1.

s1(p/3) ~ 0.9935p%/

Based on this, we conjecture that the growth is ~ n%/2.
This is intermediate between the growth of weight 3 Eisenstein

series (~ n?) and cusp forms ~ n.



Basic saddle point method

So(r) - g (So(=1/7) + 251(~1/7) + To(~1/7))

3V3i & ico f2a(7' W)@2V+3a (3w)
Jo(T) 2\/—7”20(1 0-[ /(w+r))3/2 dw

= - V3i 1 1.2 +O(7'_1).

2V/2m 4/—it

Then .
Isu(n)] < [0 |S.(7) e_zml'”‘ dr < Cn°?

for some constant C

Weaker but consistent with the conjectured ~ n®/?

Chattopadhyaya, JM (2023)



Some questions:
e Can a more accurate estimate be obtained?
e What about the growth for N=2,3,...7

e Is there a geometric or physical understanding for these
growth patterns?



Concluding comments

e Mock modular forms play a key role for instanton partition
functions

e These partition functions give rise to new modular-type
functions

e The physics and geometry of instantons motivate the analysis
of their transformation properties and Fourier coefficients

Thank you!



