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Modular forms

Definition: A modular form of weight w is a holomorphic function
f ∶ H→ C, which

1. transforms under an SL2(Z) matrix (a b
c d

) as follows:

f ( aτ + b

cτ + d
) = (cτ + d)w f (τ),

2. and whose growth for τ → i∞ is such that

lim
τ→i∞

(cτ + d)−w f ( aτ + b

cτ + d
) (∗)

is bounded for all (a b
c d

) ∈ SL2(Z).

Ô⇒ f has a Fourier series:

f (τ) = ∑
n

a(n)qn, q = e2πiτ



Example 1

Eisenstein series k ∈ 2N, k ≥ 4:

Ek(τ) = 1 + (2πi)k

(k − 1)! ζ(k)

∞
∑
n=1

σk−1(n)qn

Divisor sum:
σk(n) = ∑

d ∣n
dk
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Plot of coefficients of E4
Tesselation of unit disc from E4.
C. Feller, Summer Project TCD, 2018



Example 2

The Discriminant function ∆ ∶ H→ C is an example of a cusp form:

∆(τ) = q
∞
∏
n=1

(1 − qn)24

=
∞
∑
n=1

c(n)qn
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Ramanujan conjecture (proven by Deligne) for bound on c(n):

∣c(n)∣ ≤ σ0(n)n(12−1)/2



Example 3

Example of a weakly holomorphic modular form:

1

∆(τ)
=

∞
∑
n=−1

d(n)qn

Hardy-Rademacher-Ramanujan formula for growth of d(n):

d(n) ∼ e4π
√
n

Crucial for the understanding of the microscopic entropy of CFT’s
and supersymmetric black holes Cardy;. . . Strominger, Vafa (1996);. . . ; Dabholkar

(2004),. . .



Mock modular forms

Let

g∗(τ, τ̄) = −2i ∫
i∞

−τ̄

g(−v)
(−i(v + τ))w

dv , (∗∗)

Definition: A mock modular form of weight w is a holomorphic
q-series f ∶ H→ C, such that its completion

f̂ (τ, τ̄) = f (τ) + g∗(τ, τ̄)

1. transforms as a modular form of
weight w,

2. g∗ is the image under the map (∗∗)
of the complex conjugate g of a
modular form with weight 2 −w,

3. The combination (∗) is bounded for f .

Ramanujan; Zwegers (2008); Zagier (2010);. . .



Example 4

Generating function of Hurwitz class numbers H(n),

hµ(τ) = ∑
n≥0

H(4n − µ)qn−µ/4, µ = 0,1

These functions are mock modular forms of weight 3/2 for the
congruence subgroup Γ0(4), and with

g0(τ̄) = ϑ2(2τ), g1(τ̄) = ϑ3(2τ)

Zagier (1975)



Example 5

Mock modular form of weight 1/2 for SL2(Z) central to the
Mathieu Moonshine phenomenon:

F (τ) = q−1/8(−2 + 90q + 462q2 + 1540q3 + . . . )

with
g(τ̄) = η(τ)

3

Note this function is weakly holomorphic.
Eguchi, Hikami (2009), Dabholkar, Murthy, Zagier (2012),. . .



Four-manifolds and lattices

Let X be an oriented, smooth, compact four-manifold. We assume
X is simply connected (thus b1 = dim(H1(X )) = 0).

H2(X ,Z) together with the intersection form

B(k1,k2) = ∫
X

k1 ∧ k2, k1,2 ∈ H2(X ,Z)

gives rise to an integral, uni-modular lattice L (the image of
H2(X ,Z) in H2(X ,R))

The lattice has signature (b+2 ,b−2 ).

For b+2 = 1, let J be the normalized generator of the unique
self-dual direction in H2(X ,R). It provides the projection of k ∈ L
to (L⊗R)+,

k+ = B(k , J) J



Instantons solutions in Yang-Mills theory

Let P → X be a G -principal bundle for a Lie group G .

Let A = Aµdx
µ ∈ Ω1(X , ad(P)) be the connection 1-form with

associated field strength F = dA +A ∧A.

A 

r-dim.

C1



Instantons solutions in Yang-Mills theory

Instantons are the anti-self-dual solutions

F = − ∗ F

They are characterized by topological numbers:

Instanton number:

k = 1

8π2 ∫X
Tr[F ∧ F ] ∈ Z

’t Hooft flux:

c1 = 2µ = i

2π
Tr[F ] ∈ H2(X ,Z)



Moduli spaces

The moduli space of instantons is defined as:

Mk,µ = {F = − ∗ F ∣modulo gauge transformations}

Virtual dimension for G = SU(2):

vdimR(Mk,µ) = 8k − 3(b+2 + 1)

Mk,µ may be non-compact or have singularities

The spaces Mk,µ have been crucial for the classification of
four-manifolds up to diffeomorphism.

Rigorous mathematical results are available through the
correspondence of the instantons and semi-stable vector bundles by
Hitchin-Kobayashi and Donaldson-Uhlenbeck-Yau



Instanton partition functions are generating series

Zµ(Y ) = ∑
k

cµ(k)Y k

where the cµ(k) is a topological invariant of Mµ,k and Y a formal
variable for the moment

Examples:

● Donaldson invariant:

D`,n(p,x) = ∫
Mk,µ

µD(p)` ∧ µD(x)n

with the Donaldson map µD ∶ Hr(X ) → H4−r(Mk,µ)
● Euler characteristic: χ(Mµ,k) = ∑j(−1)j bj(Mµ,k)
● . . .



Yang-Mills action:

S[A] = − 1

g2 ∫X
Tr[F ∧ ∗F ] + iθ

8π2
Tr[F ∧ F ]

Complexified coupling:

τ = θ

2π
+ 4πi

g2
∈ H

S-duality is an equivalence of the theory under

● T : τ → τ + 1

● S : τ → −1/τ , G → LG



Exact non-perturbative results are often difficult to achieve in
quantum field theory. Supersymmetric theories contain more fields,
which however reduce quantum effects, and allow for exact results.

Path integrals localize on Q-fixed equations of topologically
twisted N = 2 and N = 4 supersymmetric theories. Instantons solve
the Q-fixed equations.

The physical approach provides a useful viewpoint on the
mathematical invariants mentioned before. Together with
S-duality, this provides an heuristic explanation for the role of
modularity for instanton partition functions.

The analysis for N = 2 and N = 4 are different, but mock modular
forms play a key role for both.



N = 2 supersymmetry: u-plane integral

The physical path integral leads to the finite dimensional u-plane
integral for four-manifolds with b+2 = 1.
Witten (1995); Moore, Witten (1997); Losev, Nekrasov, Shatashvili (1997), . . .

For the simplest case, pure N = 2 supersymmetric SU(2) YM, u is
the Hauptmodul for the congruence subgroup Γ0(4) ∈ SL2(Z),

u(τ)
Λ2

=1

2

ϑ2(τ)4 + ϑ3(τ)4

ϑ2(τ)2ϑ3(τ)2

=1

8
(q−1/4 + 20q1/4 − 62q3/4 + 216q5/4 +O(q7/4)),

with ϑj Jacobi theta series and Λ the scale of the quantum field
theory.
Seiberg, Witten (1994); Matone (1996); Nahm (1996),. . .



u-plane versus H/Γ0(4)

Partitioning of the u-plane by the
images of FI in H/Γ0(4)
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Fundamental domain for H/Γ0(4)



The u-plane integral takes the form

ΦJ
µ[O] = ∫

H/Γ0(4)
dτ ∧ d τ̄ ν(τ)OΨJ

µ(τ, τ̄)

with

● ν(τ) = da
dτ A(u)χ(X)B(u)σ(X) = q−

3
8 + . . .

● Sum over fluxes:

ΨJ
µ(τ, τ̄) =

1
√
y
∑

k∈L+µ
B(k , J)q−k2

−
/2 q̄k2

+
/2

with y = Im(τ)
Moore, Witten (1997)



Efficient evaluation using mock modular forms for all X with b+2 = 1
Malmendier (2011); Malmendier, Ono (2012); Korpas, JM (2017); Korpas, JM, Moore, Nidaiev (2019); JM, Moore

(2021)

Construction of a suitable anti-derivative:

∂F̂ (τ, τ̄)
∂τ̄

= ΨJ
µ(τ, τ̄),

Then

ΦJ
µ[O] = [O ν(τ)F (τ)]q0 + contributions from other cusps,

with F (τ) = ∑n c(n)qn the holomorphic part of F̂ (τ, τ̄)



Explicit results for X = P2

Choose for X the complex projective plane P2

Let O = u` ≃ µD(`p)

Then

` 8` ΦJ
1/2[u

`]
0 1
2 19
4 680
6 29 557
8 1 414 696
⋮ ⋮

In agreement with results from Ellingsrud, Göttsche (1995) and Göttsche, Zagier (1996) for P2



Large charge correlators

With these modular expressions, we can study the asymptotics for
large `, or “large charge” correlators

We find experimental evidence that

● ΦJ
µ[u`] ∼ C

` log(`)

● ⇒ Evidence that ΦJ[e2pu] is an entire function of p



Other observables and physical theories

Surface operators appear as as (holomorphic) elliptic variables in
ΨJ

µ

Background fluxes can be included for each U(1) subgroup of the
global symmetry group. These couplings lead to non-holomorphic
elliptic variables.

Gives rise to:
● an elliptic refinement of F (τ):

F(τ, z) = q
−1/8

(−w
1/2
−w

−1/2
+ (−16w

2
+ 19w

3/2
− 64w + 26w

1/2
+ 160 + palindromic terms)q + . . . )

with w = e2πiz . Do these coefficients have a Moonshine
interpretation? Aspman, Furrer, JM (2023)

● many explicit results with similar “large charge” asymptotics
questions as above

● evaluation of the u-plane integral with elliptic variables is
subtle



N = 4 supersymmetry (Vafa-Witten theory)

The partition function for G = SU(N) of this theory takes the form

ZX
N (τ) = ∑

k≥0

bN(k)qk−Nχ(X)/24

with
bN(k) = χ(Mk,µ)

Physical expectation: ZX
N transforms as a weakly holomorphic

modular form of weight −χ(X )/2
Vafa, Witten (1994)



NB Mk,µ includes pointlike, singular instantons. Let Nk,µ be the
moduli space of smooth instantons

As a result of the relation between these moduli spaces, ZX
N can be

expressed for an algebraic surface X as

ZX
N (τ) =

f XN (τ)
η(τ)Nχ(X)

with η the Dedekind eta function and

f XN (τ) = ∑
k≥0

cN(k)qk

and
cN(k) = χ(Nk,µ)

Göttsche (1998)

Motivates the analysis of both bN(k) and cN(k)



G = SU(2) and X = P2

Asymptotics of bN follow from weak holomorphicity of ZX
N :

bN(k) ∼ eπ
√

2kNχ(X)/3

Generating functions fN are determined for arbitrary N in terms of
(generalized) Appell functions using algebraic-geometric
techniques.
Klyachko (1991), Yoshioka (1994), Vafa, Witten (1994), Kool (2010), Weist (2010), JM (2010), (2014), (2017)

Exact Rademacher type formula for bN , N = 2,3 and X = P2

Bringmann, JM (2013), Bringmann, Nazaroglu (2019)

For SU(2):
f2,µ(τ) = 3hµ(τ)

with h0 the generating function of Hurwitz class numbers
⇒ f2 is a mock modular form



Plot of coefficients for N = 2

Plot of the coefficients H(4n − µ) as function of n. The red dots
represent the coefficients µ = 0, while the green ones represent the
coefficients µ = 1.

The distribution of the coefficients appears chaotic and highly
scattered. On average the coefficients appear to grow as a power
law, in agreement with the growth for an Eisenstein series.

Thus almost all the cohomology of Mk,µ is due to the point-like
instantons
JM, Chattopadhyaya (2023)



N = 3

The first few terms of the q-expansions of f3,µ(τ) are:

f3,0(τ) = 1

9
− q + 3q2 + . . .

f3,1(τ) = f3,2(τ) = 3q5/3 + 15q8/3 + 36q11/3 + . . .

f3,µ are examples of a mock modular form of depth 2 and weight 3.

The modular completion reads

f̂3,µ = f3,µ(τ) −
i

π
(3

2
) ∑
ν=0,1
∫

i∞

−τ̄

f̂2,ν(τ,−v)Θµ/2(3v)
(−i(v + τ))3/2 dv ,

which involves an iterated integral
Manschot (2019). See also Alexandrov, Banerjee, JM, Pioline (2018); Bringmann, Kaszian, Milas (2019).



We plot the coefficients b3,0(n) of f3,0

The green dots represent the coefficients for odd n and the red
dots for even n

We observe a fairly regular power law growth ∼ n2, in agreement
with that of Eisenstein series of weight 3.



Mock cusp form

Definition: A mock cusp form is a mock modular form f (τ) such
that the combination (∗) vanishes for all elements of SL2(Z). Thus
in particular the constant term of the Fourier series of f vanishes.

The weight 3 Eisenstein series mµ,

m0(τ) = 1

9
+ 8q + 30q2 + . . .

m1(τ) = 3q2/3 + 24q5/3 + 51q8/3 + . . .

transforms identically under SL2(Z) as f̂3,µ

Their difference is the mock cusp form Sµ:

S0(τ) = ∑
n

s0(n)qn = 3q + 9q2 + 21q3 + . . . ,

S1(τ) = ∑
n

s1(n)qn = q2/3 + 7q5/3 + . . . .



Plot of coefficients s0(n) of S0

The green dots represent the coefficients s0(n) for odd n and the
red dots for even n



Plot of prime coefficients s0(p) of S0

The growth of the coefficients is surprisingly regular. The least
square fits for the primes p are

s0(p) ∼ { 6.7547p3/2, p = 3n + 1,

3.578p3/2, p = 3n − 1.

s1(p/3) ∼ 0.9935p3/2

Based on this, we conjecture that the growth is ∼ n3/2.
This is intermediate between the growth of weight 3 Eisenstein
series (∼ n2) and cusp forms ∼ n.



Basic saddle point method

S0(τ) =
−iτ3

√
3

(S0(−1/τ) + 2S1(−1/τ) + J0(−1/τ))

J0(τ) = 3
√

3i

2
√

2π

2

∑
ν=0

1

∑
α=0
∫

i∞

0

f̂2,α(τ,w)Θ 2ν+3α
6

(3w)

(−i(w + τ))3/2 dw

= −
√

3i

2
√

2π

1

4

2√
−iτ

+O(τ−1).

Then

∣sµ(n)∣ ≤ ∫
1

0
∣Sµ(τ) e−2πinτ ∣dτ < C n5/2

for some constant C

Weaker but consistent with the conjectured ∼ n3/2

Chattopadhyaya, JM (2023)



Some questions:

● Can a more accurate estimate be obtained?

● What about the growth for N = 2,3, . . . ?

● Is there a geometric or physical understanding for these
growth patterns?



Concluding comments

● Mock modular forms play a key role for instanton partition
functions

● These partition functions give rise to new modular-type
functions

● The physics and geometry of instantons motivate the analysis
of their transformation properties and Fourier coefficients

Thank you!


