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Abstract. In his famous deathbed letter, Ramanujan introduced the notion of a mock theta
function, and he offered some alleged examples. Recent work by Zwegers has elucidated the
theory encompassing these examples. They are holomorphic parts of special harmonic weak
Maass forms. Despite this understanding, little attention has been given to Ramanujan’s original
definition. Here we prove that Ramanujan’s examples do indeed satisfy his original definition.

1. Introduction and Statement of Results

Ramanujan’s deathbed letter [1] gave tantalizing hints of his theory of mock theta functions.
Thanks to Zwegers [2, 3], it is now known that these functions are essentially the holomorphic
parts of weight 1/2 harmonic weak Maass forms1 whose nonholomorphic parts are period inte-
grals of weight 3/2 unary theta functions. This realization has many applications (e.g. [5, 6]).

Here we revisit Ramanujan’s original definition from his deathbed letter [1]. After a discussion
of the asymptotics of certain modular forms which are given as Eulerian series, he writes:

“...Suppose there is a function in the Eulerian form and suppose that all or an infinity of
points q = e2iπm/n are exponential singularities and also suppose that at these points the as-
ymptotic form of the function closes as neatly as in the cases of (A) and (B). The question
is: - is the function taken the sum of two functions one of which is an ordinary theta func-
tion and the other a (trivial) function which is O(1) at all the points e2iπm/n? The answer is
it is not necessarily so. When it is not so I call the function Mock ϑ-function. I have not proved
rigorously that it is not necessarily so. But I have constructed a number of examples in which it
is inconceivable to construct a ϑ-function to cut out the singularities of the original function.”

Remark. By ordinary theta function, Ramanujan meant a weakly holomorphic modular form
with weight k ∈ 1

2
Z on some Γ1(N) (see [7] for background). Recall that a weakly holomorphic

modular form is a meromorphic modular form whose poles (if any) are supported at cusps.

Little attention has been given to Ramanujan’s original definition, prompting Berndt to re-
mark [8] that “it has not been proved that any of Ramanujan’s mock theta functions are really
mock theta functions according to his definition.” The following fact fills in this gap.

Theorem 1.1. Suppose that f(z) = f−(z) + f+(z) is a harmonic weak Maass form of weight
k ∈ 1

2
Z on Γ1(N), where f−(z) (resp. f+(z)) is the nonholomorphic (resp. holomorphic) part

of f(z). If f−(z) is nonzero and g(z) is a weight k weakly holomorphic modular form on any
Γ1(N ′), then f+(z)− g(z) has exponential singularities as q approaches infinitely many roots of
unity ζ.

Remark. Harmonic weak Maass forms in this paper have principal parts at all cusps.

1These forms were defined recently by Bruinier and Funke [4].
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As a corollary, we obtain the following fitting conclusion to Ramanujan’s enigmatic question
by proving that his alleged examples indeed satisfy his original definition (Note. Throughout,
we let q := e2πiz). More precisely, we prove the following.

Corollary 1.2. Suppose that M(z) is one of Ramanujan’s mock theta functions, and let γ and
δ be integers for which qγM(δz) is the holomorphic part of a weight 1/2 harmonic weak Maass
form. Then there does not exist a weakly holomorphic modular form g(z) of any weight k ∈ 1

2
Z

on any congruence subgroup Γ1(N ′) such that for every root of unity ζ we have

lim
q→ζ

(qγM(δz)− g(z)) = O(1).

Remark. The limits in Corollary 1.2 are radial limits taken from within the unit disk.

As his letter indicates, Ramanujan was inspired by the intimate relationship between the
exponential singularities of modular forms at roots of unity and the asymptotics of their cor-
responding Fourier coefficients. As a toy model of his question, we begin by considering the
following question whose solution would have been clear to him: If f(z) is a weight k1 weakly
holomorphic modular form which has some exponential singularities at cusps, then can there
be another weakly holomorphic modular form of different weight k2, say g(z), that exactly cuts
out its singularities at roots of unity? The answer is no. If such a g(z) existed, then both f(z)
and g(z) must have the same principal parts at all cusps, and at least one of these must be
nonconstant. Without loss of generality, suppose that the principal part at the cusp infnity
is nonconstant, and then consider the function h(z) := f(z) − g(z). By hypothesis, h(z) has
bounded radial limits as q approaches every root of unity. Now, since f(z) and g(z) are modular
on some common subgroup Γ1(N ′), then if we take ( a bc d ) ∈ Γ1(N ′) with cd 6= 0, then we have

(1.1) h
(
az+b
cz+d

)
= f

(
az+b
cz+d

)
− g

(
az+b
cz+d

)
= (cz + d)k1f(z)− (cz + d)k2g(z).

Letting z → i∞, we find that f(z) and g(z) cannot cut out the same exponential singularities
at roots of unity because of the difference between the weights.

In the case of Ramanujan’s examples, the situation is much more subtle, and this is the point
of his last letter and this paper.

Example. Although a weakly holomorphic modular and a mock theta function cannot cut
out each other’s singularities, Ramanujan discusses a near miss. He considers his mock theta
function

(1.2) f(q) := 1 +
q

(1 + q)2
+

q4

(1 + q)2(1 + q2)2
+ . . . ,

and he compares it to a q-series b(q) which is essentially a weight 1/2 weakly holomorphic
modular form. He then conjectures, as q approaches an even order 2k primitive root of unity ζ,
that

lim
q→ζ

(
f(q)− (−1)kb(q)

)
= O(1).

Watson confirmed this in [9], and Folsom, Rhoades, and the second author went further by
deriving formulas for the O(1) numbers as explicit numbers in Z[ζ].

Theorem 1.1 follows from recent developments in the theory of harmonic Maass forms; in
particular we make use of the extended Petersson scalar product of Bruinier and Funke [4]. Their
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work implies the that a harmonic weak Maass form which is not a weakly holomorphic modular
form must have a nonconstant principal part at some cusp. To obtain the corollary, we employ
the theory of Poincaré series and the method of quadratic twists to first show that a putative
modular form must have weight 1/2. Corollary 1.2 then follows by applying Theorem 1.1.

The paper is organized as follows. In §2 we recall the basic facts about harmonic weak Maass
forms, and the pairing of Bruinier and Funke. In §3 we describe the construction of the Poincaré
series. In §4 we conclude with the proof of Theorem 1.1 and Corollary 1.2.

2. Harmonic weak Maass forms

Here we recall some of the work of Bruinier and Funke [4] on harmonic weak Maass forms.

2.1. Definitions. Throughout we suppose that k ∈ 1
2
Z. The usual weight k hyperbolic Lapla-

cian operator is given by

(2.1) ∆k := −y2

(
∂2

∂x2
+

∂2

∂y2

)
+ iky

(
∂

∂x
+

∂

∂y

)
,

where z = x+ iy. For weights k ∈ 1
2

+ Z, we note that the level N of Γ1(N) must be a multiple
of 4. In this case, we define εd for odd d by

(2.2) εd :=

{
1 if d ≡ 1 (mod 4),
i if d ≡ 3 (mod 4).

Definition 2.1. A harmonic weak Maass form of weight k on a congruence subgroup Γ1(N) is
any smooth function f : H→ C satisfying:

(1) For all γ ∈ Γ1(N),

f
(
az+b
cz+d

)
=

{
(cz + d)kf(z) if k ∈ Z(

c
d

)2k
ε−2k
d (cz + d)kf(z) if k ∈ 1

2
+ Z.

(2) We have that ∆kf = 0.
(3) There is a polynomial Pf =

∑
n≤0CF (n)qn ∈ C[q−1] such that f(z) − Pf = O(e−εy) for

some ε > 0 as y → +∞. We require the analogous condition at all the cusps of Γ1(N).

We denote the space of weight k harmonic weak Maass forms on Γ1(N) by Hk(Γ1(N)).

Three remarks.
1) The polynomials in Definition 2.1 (3) are the principal parts of f(z) at cusps.

2) This space corresponds to H+
k (Γ1(N)) in the notation of [4].

3) Weakly holomorphic modular forms are harmonic weak Maass forms, however in this paper
we will primarily be interested in Maass forms which are non-holomorphic.

2.2. Fourier expansions. Harmonic weak Maass forms have two components (see [4]), a
holomorphic piece and a nonholomorphic piece. If we let e(α) := e2πiα and let Hk(w) :=
e−w

∫∞
−2w

e−tt−kdt, then every f(z) ∈ Hk(Γ1(N)) decomposes as f(z) = f−(z) + f+(z), where

f+(z) =
∑

n�−∞

c+
f (n)qn and f−(z) =

∑
n<0

c−f (n)Hk(2πny)e(nx).

We refer to f+(z) as the holomorphic part and f−(z) as the nonholomorphic part.
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Fact 2.2. Suppose that M(z) is one of Ramanujan’s alleged examples of a mock theta func-
tion. Thanks to Zwegers [2, 3], there are integers γ and δ for which qγM(δz) =: f+(z) is the
holomorphic part of a weight 1/2 harmonic weak Maass form f(z) on a congruence subgroup
Γ1(N). Moreover, the nonholomorphic part of this form is the period integral of a weight 3/2
unary theta function. In particular, there are finitely many positive integers δ1, . . . , δs for which
c−f (n) = 0 unless n = −δim2 for some 1 ≤ i ≤ s and some integer m.

2.3. The Bruinier-Funke Pairing. Here we recall the Bruinier and Funke pairing, defined

using the operator ξk := 2iyk · ∂
∂z
, which induces a surjective map ξ2−k : H2−k(Γ1(N)) →

Sk(Γ1(N)) onto the space of weight k cusp forms on Γ1(N). The image ξ2−k(f) is nonzero if
and only if f has a nonzero nonholomorphic part. Bruinier and Funke [4] used ξ2−k to define a
bilinear pairing {·, ·} : Mk(Γ1(N))×H2−k(Γ1(N))→ C by

(2.3) {g, f} := (g, ξ2−kf)k ,

where (·, ·)k is the usual Petersson scalar product. Here Mk(Γ1(N)) denotes the space of weight
k holomorphic modular forms on Γ1(N). Proposition 3.5 of [4] gives this pairing in terms of the
coefficients of g(z) and f+(z). In particular, suppose at a cusp ρ, that g(z) has an expansion∑

n a(ρ, n)qn and f+(z) has the expansion
∑

n b(ρ, n)qn. They prove that

(2.4) {g, f} =
∑
ρ

∑
n≤0

a(ρ,−n)b(ρ, n).

The first sum is over the components of a vector-valued form. In their work all forms have level
1, and higher level forms may be viewed as level 1 vector-valued forms organized by cusps.

This pairing has the important property that {ξ2−kf, f} = (ξ2−kf, ξ2−kf)k 6= 0 when
f−(z) 6= 0. However, since ξkf is a cusp form, (2.4) immediately gives the following.

Theorem 2.3 (Bruinier, Funke). If f(z) ∈ H2−k(Γ1(N)) has nonzero nonholomorphic part,
then f(z) must have a nonconstant principal part at some cusp.

3. Poincaré series

We require Maass-Poincaré series, which were considered previously in work of Niebur [10, 11].
Their principal parts will serve as a basis for the principal parts of the mock theta functions.

For s ∈ C and y ∈ R − {0} we let Ms(y) := |y|− k
2M k

2
sgn(y),s− 1

2
(|y|), where Mν,µ is the usual

M -Whittaker function which satisfies

∂2u

∂z2
+

(
−1

4
+
ν

z
+

1
4
− µ2

z2

)
u = 0.

Since spaces of forms on Γ1(N) are a direct sum over the spaces of Maass forms on Γ0(N) with
Nebentypus, it suffices to construct Poincaré series on Γ0(N) with arbitrary Nebentypus χ. For
a positive integer m, we define φ−m,s(z) := Ms(−4πmy)e(−mx), and we define the Poincaré
series on Γ0(N) with Nebentypus χ and weight k ∈ 1

2
+ Z by

(3.1) Fk(−m, s, z) :=
∑

γ∈Γ∞\Γ0(N)

( c
d

)−2k

ε2kd χ(d)−1(φ−m,s|kγ)(z).
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It turns out that φ−m,s(z) is an eigenfunction of ∆k with eigenvalue s(1 − s) + (k2 − 2k)/4.
Therefore Fk(−m, s, z) is a weak Maass form of weight k on Γ with character χ whenever the

series is absolutely convergent. This is clear if <(s) > 1 as φ−m,s(z) = O(y<(s)− k
2 ) as y → 0. To

obtain a harmonic Maass form, we choose s = k
2

(or s = 1 − k
2

if k < 1). Convergence for this

choice of s for weight k ∈ 1
2

+ Z Poincaré series is only questionable if k = 1/2 or k = 3/2. We
are primarily interested in the case when k = 1/2.

The Fourier expansion of such series is well known (for example, see [10, 12, 13, 14, 15]). We
recall the Kloosterman sum of weight k ∈ 1

2
+ Z for Γ0(N) with Nebentypus χ.

(3.2) Kk(m,n, c, χ) :=
∑

d (mod c)×

( c
d

)−2k

ε2kd χ(d)e

(
md+ nd

c

)
,

where d runs through primitive residue classes mod c and d is the multiplicative inverse of d
mod c. We then have the following.

Proposition 3.1. If m is a positive integer, then the Poincaré series Fk(−m, z, s) for Γ0(N)
with Nebentypus χ has the Fourier expansion

Fk(−m, z, s) =Ms(−4πmy)e(−mx) +
∑
n∈Z

c(n, y, s)e(nx),

where the coefficients c(n, y, s) are given by

2πi−kΓ(2s)
Γ(s−k/2)

∣∣ n
m

∣∣ k−1
2

∑
c>0,N |c

Kk(−m,n, c, χ)

c
J2s−1

(
4π
√
|mn|
c

)
Ws(4πny), n < 0

2πi−kΓ(2s)
Γ(s+k/2)

∣∣ n
m

∣∣ k−1
2

∑
c>0,N |c

Kk(−m,n, c, χ)

c
I2s−1

(
4π
√
|mn|
c

)
Ws(4πny), n > 0

41−k/2π1+s−k/2i−k|m|s−k/2y1−s−k/2Γ(2s−1)
Γ(s+k/2)Γ(s−k/2)

∑
c>0,N |c

Kk(−m, 0, c, χ)

c2s
, n = 0

In the proposition above, Ik is the usual modified Bessel function and Jk is the Bessel function
of the first kind. If s ≥ 1 and equals k/2 or 1 − k/2, then these Poincaré series converge and
are harmonic weak Maass forms. For k = 1/2 it is known that the formulas still hold. For
completeness, we shall give brief remarks below concerning the convergence.

Before we discuss the weight 1/2 case, we stress that this proposition allows us to easily
determine the asymptotics of the coefficients of holomorphic parts of harmonic weak Maass
forms. This follows from the well-known asymptotic

(3.3) Ik(x) ∼ ex√
2πx

(
1− 4k2−1

8x
+ . . .

)
.

The Poincaré series constructed above have nonconstant principal parts only at the cusp infinity.
We may similarly construct Poincaré series at any cusp h. We let Fk(−m, s, z, h) denote the
Poincaré series which is defined by modifying (3.1) as

Fk(−m, s, z, h) :=
∑

γ∈Γh\Γ0(N)

( c
d

)−2k

ε2kd χ(d)−1(φ−m,s|kγ)(z),
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where Γh is the stabilizer of h. As in the case of the cusp at infinity, we obtain a weak Maass
form with order −m principal part at the cusp h and constant principal parts at all other cusps.

These facts allow us to conclude with the following crucial fact.

Fact 3.2. Suppose that f(z) is a weight 1/2 harmonic weak Maass form with a nonconstant
principal part at some cusp. Let fP (z) be the weight 1/2 harmonic weak Maass form that is a
linear combination of Maass-Poincaré series which matches, up to constants, the principal parts
of f(z) at all cusps. By Theorem 1.1, it follows that f(z) − fP (z) is a weight 1/2 holomor-
phic modular form, which, by the Serre-Stark Basis Theorem (for example, see [7]), implies that
f(z)−fP (z) is a linear combination of weight 1/2 unary theta functions. Therefore, the subexpo-
nential growth of the I-Bessel function, combined with the periodicity of the Kloosterman sums
in n, when m and c are fixed, then implies that a positive proportion of the coefficients of the
holomorphic part of f+(z) are nonzero. Indeed, this gives arithmetic progressions of coefficients
with smooth asymptotic subexponential growth.

Remark. We briefly discuss the convergence in Proposition 3.1 for weight 1/2 harmonic weak
Maass forms. To show this, we need similar estimates for sums of the Kloosterman sums as in
Theorem 4.1 of [14]. In that work the Kloosterman sums were rewritten as Salie-type sums,
which were then estimated using the equidistibution of CM-points (similar results may also be
found in [16]). It is clear that the shape of the Salie-type sums do not depend on the multiplier
system in a crucial way. Alternatively, the more general case, results of Goldfeld and Sarnak
in [17] and the spectral theory of automorphic forms apply. By the asymptotics for Bessel
functions, it suffices to consider the continuation of the Selberg-Kloosterman zeta function

(3.4) Zn,m(s, χ) :=
∑
c>0

Kk(−m,n, c, χ)

c2s
.

Namely, for k = 1/2 we need to show convergence at s = 3/4. The convergence we require was
shown for a special case in Theorem 2.1 of [18]. The general case follows mutatis mutandis.

Theorem 3.3. If m is a positive integer, then Zn,m(s, χ) is convergent at s = 3/4.

4. The proof of Theorem 1.1 and Corollary 1.2

Here we prove Theorem 1.1 and Corollary 1.2.

4.1. Proof of Theorem 1.1. Suppose that g(z) is a weakly holomorphic modular form on
Γ1(N ′), for some N ′, which cuts out the exponential singularities of f(z) as q approaches roots
of unity. Then h(z) := f(z)−g(z) is a harmonic weak Maass form of weight k on Γ1(lcm(N,N ′))
with nonconstant nonholomorphic part. By Theorem 2.3, h(z) has a nonconstant principal
part at some cusp. Since the nonholomorphic part f−(z) exhibits exponential decay at cusps,
it follows that h(z) is also O(1) as cusps. Suppose that h(z) has a nonconstant principal
part at infinity (a similar argument applies at other cusps). By choosing matrices ( a bc d ) ∈
Γ1(lcm(N,N ′)), combined with the fact that

lim
z→i∞

h
(
az+b
cz+d

)
= lim

z→i∞
(cz + d)kh(z),

we find that infinitely many roots of unity are exponential singularities for h(z).
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4.2. Proof of Corollary 1.2. Suppose that M(z) is one of Ramanujan’s alleged examples of
a mock theta function. Then there are integers γ and δ for which qγM(δz) =: f+(z) is the
holomorphic part of the weight 1/2 harmonic weak Maass form. Now suppose that g(z) is a
weakly holomorphic modular form of some weight k which cuts out the exponential singularities
of f(z). Following the proof of Theorem 1.4 of [19], we can use Fact 2.2, Fact 3.2, and the theory

of quadratic (and trivial) twists to obtain a weight 1/2 weakly holomorphic modular form f̂(z).

By Fact 3.2, this can be done so that f̂(z) is nontrivial and has nonconstant principal parts
at some cusp. Applying the same procedure to g(z) gives a weakly holomorphic modular form

ĝ(z). We then have that f̂(z) and ĝ(z) cut out exactly the same exponential singularities at all
roots of unity. By the discussion after Corollary 1.2, it then follows that k = 1/2. Therefore,
if there is such a g(z), then f(z) − g(z) is a weight 1/2 harmonic weak Maass form which has
a nonvanishing nonholomorphic part, which also has the property that f+(z) − g(z) has no
exponential singularities at any roots of unity. This contradicts Theorem 1.1.
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