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Abstract. Here we consider a special family of matrices which arise naturally in
J. Greene’s analogue of the Euler integral transform for finite field hypergeometric
series defined in his 1984 Ph.D. thesis. We prove a conjecture of Ono concerning the
determinants and eigenspaces of these special matrices.

1. Introduction and Statement of Results

In his 1984 Ph.D. thesis [2], Greene initiated the study of hypergeometric functions
over finite fields which are in many ways similar to the classical hypergeometric functions
of Gauss. To define these functions, first let A and B be two multiplicative, complex-

valued characters of F×q extended to Fq by A(0) = B(0) = 0 and let
(
A
B

)
be the

normalized Jacobi sum

(1)
(
A
B

)
:=

B(−1)
q

J(A,B) =
B(−1)
q

∑
x∈Fq

A(x)B(1− x).

Here B denoted that complex conjugate of B. Greene defined the Gaussian hypergeo-

metric function n+1Fn

(
A0, A1, . . . , An

B1, . . . , Bn

∣∣∣∣x)
p

by

n+1Fn

(
A0, A1, . . . , An

B1, . . . , Bn

∣∣∣∣x)
p

:=
q

q − 1

∑
χ

(
A0χ
χ

)(
A1χ
B1χ

)
· · ·
(
A0χ
Bnχ

)
χ(x).

Here
∑

χ denotes the some over all characters of Fq. These functions have deep con-
nections to certain combinatorial congruences of modular forms, as well as traces of
Hecke operators and counting points on certain modular varieties [5]. For example, if
we let 2E1(λ) : y2 = x(x − 1)(x − λ) be the Legendre form elliptic curve (λ 6= 0, 1),
we have the following result whenever p ≥ 5 is a prime and λ ∈ Q − {0, 1} satisfies
ordp(λ(λ− 1)) = 0 [4]:

2F1

(
φp φp

ε

∣∣∣∣λ)
p

= −φp(−1) · 2a1(p;λ)

q
.
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Here φp is the Legendre symbol modulo p, ε is the trivial character, and 2a1(p;λ) is the
trace of Frobenius of 2E1(λ) at p. In analogy with the Euler integral transform for classi-
cal hypergeometric functions, it turns out that these Gaussian hypergeometric functions
are traces of Gaussian hypergeometric functions of lower degree. More precisely, Greene
proved the following fact:

n+1Fn

(
A0, A1, . . . , An

B1, . . . , Bn

∣∣∣∣x)
p

(2)

=
AnBn(−1)

p

p−1∑
y=0

nFn−1

(
A0, A1, . . . , An−1

B1, . . . , Bn−1

∣∣∣∣x)
p

· An(y)AnBn(1− y).

This transform is related to the modularity of other varieties as well. For example,
Ahlgren and Ono relate special values of 4F3 hypergeometric functions to the coefficients
of modular forms using the modularity of a certain Calabi-Yau threefold [1]. Thus, it is
natural to consider the following matrix which plays the role of Euler’s integral transform
in the special case Ai = φq and Bi = ε.

Definition. Let p be an odd prime. Let q = pn ≥ 5 and Mq be the (q − 2) × (q − 2)
matrix (aij) indexed by i, j ∈ Fq − {0, 1} where

aij = φq(1− ij)φq(ij).

Here φq denotes the quadratic character in Fq. Based on numerical data, Ono made
the following conjecture.

Conjecture (Ono). Let fq be the characteristic polynomial of Mq. Then

fq(x) =

{
(x+ 1)(x− 1)(x+ 2)(x2 − q)(q−5)/2 if φq(−1) = 1

x(x2 − 3)(x2 − q)(q−5)/2 if φq(−1) = −1.

Our main result is the following.

Theorem 1.1. Ono’s conjecture is true.

Remarks. (1) For the eigenvalues 0,−1,+1,−2, we give explicit formulas for the
eigenvectors (cf. Proposition 2.1).

(2) It is clear that the proof can be generalized to other cases of the analogue of
Euler’s integral formula. However, it is difficult to precisely state a more general
theorem due to the absence of closed formulas for more general Jacobi sums.

The paper is organized as follows. In §2 we establish the claimed formulas for the
eigenvalues λ ∈ {±1,−2} using Jacobi sums. In §3 we complete the proof of the main
theorem be proving that (x2 − q)q−5 divides the characteristic polynomial of Mq and
that x2 − 3 divides the characteristic polynomial when φq(−1) = −1.
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2. Eigenvectors for λ ∈ {0,±1,−2}

The claimed formulas for the eigenvectors can be deduced using the following well-
known lemma which we prove for completion.

Lemma 1. If a0, a1, a2 ∈ Fq and a2 6= 0, then∑
x∈Fq

φ(a0 + a1x+ a2x
2) =

{
−φ(a2) if a21 6= 4a0a2
φ(a2)(q − 1) if a21 = 4a0a2.

Proof. Factor out a2 and complete the square to get∑
x∈Fq

φ(a0 + a1x+ a2x
2) = φ(a2)

∑
x∈Fq

φ((x− a)2 − b) = φ(a2)
∑
x∈Fq

φ(x2 − b),

where a = − a1
2a2

and b =
a21−4a0a2

4a2
. Then b = 0 if and only if the discriminant is 0,

in which case the sum is clearly φ(a2)(q − 1). If b 6= 0, then the change of variables
y = x2 − b gives∑

x∈Fq

φ(x2 − b) =
∑
y

φ(y)(φ(y + b) + 1) =
∑
y

φ(y)φ(y + b).

Now replacing y by b
2
(y − 1) and making the change of variables z = 1− y2 shows that∑

y

φ(y2 + by) =
∑
y

φ(y2 − 1) = φ(−1)
∑
z

φ(z)(φ(1− z) + 1) = φ(−1)J(φ, φ) = −1.

This follows from the classical evaluation of J(φ, φ) (for example, see [3]). �

We are in position to prove the first case of Theorem 1.1 when λ ∈ {0,±1,−2}.

Proposition 2.1. If φq(−1) = 1, then λ ∈ {±1,−2} are eigenvalues for the matrices
Mq. If φq(−1) = −1, then λ = 0 is an eigenvector for Mq. These eigenvalues have the
following corresponding eigenvectors v = (vk)k∈Fq−{0,1}:

λ = −1, vk = φq(k)(φq(k)− 1),

λ = +1, vk = 2φq(k)(φq(k − 1)− φq(k)− 1),

λ = −2, vk = φq(k)(φq(k − 1) + φq(k) + 1,

λ = 0, vk = φq(k)(φq(k)− φq(k − 1) + 1).

Proof. We will give the full calculation for the eigenvalue λ = −1 when φ(−1) = 1. The
other three cases follow similarly.
When λ = 1, we must check the formula

−vk =
∑
s 6=0,1

φ(1− ks)φ(ks)vs.
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This is equivalent to showing that for v′k := φ(k)− 1, we have

−v′k =
∑
s 6=0,1

φ(1− ks)v′s.

Using the lemma, we have∑
s6=0,1

φ(1− ks)φ(s)−
∑
s 6=0,1

φ(1− ks) = −φ(−k)− φ(1− k) + φ(1) + φ(1− k)

= −φ(k) + 1.

�

3. Determining the ±
√
3 and ±√q Eigenspaces

Here we complete the proof of Theorem 1.1 by computing the remaining eigenvalues.
We begin with the ±

√
3-eigenvalues when φq(−1) = −1.

Proposition 3.1. If φq(−1) = −1, then the characteristic polynomial of Mq is divisible
by (x2 − 3).

Proof. By a similar calculation as in the proof of the previous proposition, we find that
v = (vk), v

′ = (v′k) are eigenvectors with eigenvalue 3 for M2
q , where

vk := φ(k) + 1, v′k := 1 + φ(k)φ(k + 1).

As the characteristic polynomial of Mq is in Z[x], we find that x2 − 3 divides the char-
acteristic polynomial of Mq. �

We now finish the proof of Theorem 1.1.

Proposition 3.2. The characteristic polynomial of Mq is divisible by (x2 − q) p−5
2 .

Proof. We begin by defining the following matrix related to Mq. Let p, q be as above.
Let M̃q = (φ(1− ij))i,j∈Fq

be a q × q matrix indexed by values of Fq.
Note that by row reduction it suffices to prove that the characteristic polynomial of M̃q

is divisible by (x2 − q) p−1
2 . Consider the matrix M̃2

q =
(∑

k∈Fq
φ(1− ik)φ(1− jk)

)
i,j∈Fq

For each a ∈ Fq − {0,−1}, let Va = (vi)i∈Fq be a vector indexed by elements of Fq such
that va = 1, v−1 = −φ(−a), and vi = 0 for all i ∈ Fq − {0, a}. Then if (ui) = M̃q

2
Va, we

have

(ui) =

∑
j∈Fq

vj
∑
k∈Fq

φ(1− ik)φ(1− jk)


=

∑
k∈Fq

φ(1− ik)φ(1− ak)− φ(−a)
∑
k∈Fq

φ(1− ik)φ(1 + k)

 .
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Since a 6= 0,−1, by Lemma 1 we find
u0 = 0,

ua = q − 1 + φ(−a)2 = q,

u−1 = −φ(−a)− φ(−a)(q − 1) = −qφ(−a).
For all other i, we have ui = φ(ia)− φ(−a)φ(−i) = 0. Hence Va is an eigenvector for

M̃2
q with eigenvalue q.
We may also define V0 = (vi) so that v0 = 1, and vi = 0 for all other i ∈ Fq. Then if

(ui) = M̃q

2
V0, we have u0 =

∑
k∈Fq

φ(1) = q, and ui =
∑

k∈Fq
φ(1 − ik) = 0 for i 6= 0.

Hence V0 is also an eigenvector for the eigenvalue q. This gives us a total of q−1 linearly
independent eigenvectors corresponding to the eigenvalue q. Each eigenvalue (counting
multiplicities) of M̃2

q is the square of an eigenvalue of M̃q. Thus, M̃q has eigenvalues
±√q of multiplicities that sum to q− 1 and so Mq has eigenvalues ±

√
q of multiplicities

summing to at least q − 5. By Lemma 1, we have that Trace(Mq) = −1 − φ(−1).
But we already know that the sum of all other eigenvalues is −1 − φ(−1). Hence, the
multiplicities of the ±√q eigenvalues must be equal.

�
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