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Abstract. We study a certain generalization of the classical Congruent Number Prob-
lem. Specifically, we study integer areas of rational triangles with an arbitrary fixed
angle θ. These numbers are called θ-congruent. We give an elliptic curve criterion for
determining whether a given integer n is θ-congruent. We then consider the “density”
of integers n which are θ-congruent, as well as the related problem giving the “density”
of angles θ for which a fixed n is congruent. Assuming the Shafarevich-Tate conjecture,
we prove that both proportions are at least 50% in the limit. To obtain our result we
use the recently proven p-parity conjecture due to Monsky and the Dokchitsers as well
as a theorem of Helfgott on average root numbers in algebraic families.

1. Introduction and Statement of Results

The study of right triangles with integer side lengths dates back to the work of
Pythagoras and Euclid, and the ancients completely classified such triangles. Another
problem involving triangles with “nice” side lengths was first studied systematically by
the Arab mathematicians of the 10th Century. This problem asks for a classification
of all possible areas of right triangles with rational side lengths. A positive integer n
is congruent if it is the area of a right triangle with all rational side lengths. In other
words, there exist rational numbers a, b, c satisfying

a2 + b2 = c2 ab

2
= n.

The problem of classifying congruent numbers reduces to the cases where n is square-free.
We can scale areas trivially. We can easily generate examples of congruent numbers; for
example 6 is congruent and is given by the 3 − 4 − 5 triangle. Classically, people were
able to solve this problem in a few cases using examples and elementary techniques. For
example, Fermat proved that 1 is not a congruent number and Euler was the first to find
a triangle showing that 7 is. Given an arbitrary integer, however, it traditionally seemed
hopeless to find a simple, general algorithm to test for congruency. To demonstrate the
potential complexity of finding such triangles in general, consider the following example,
due to Zagier. He computed the “simplest” right triangle representing 157 as congruent.
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In this triangle, the hypotenuse is given by 224403517704336969924557513090674863160948472041
8912332268928859588025535178967163570016480830

. For
more on the history of the congruent number problem see [4].

The natural way to view this problem is in terms of rational points on elliptic curves.
Namely, to every n we associate a corresponding elliptic curve En whose Mordell-Weil
group encodes the data of rational right triangles of area n. For each square-free positive
integer n, we define the congruent number curve En : y2 = x2 − n2x. There is a
2 − 1 correspondence between rational right triangles of area n and rational points
(x, y) on En with y 6= 0. Now En clearly has full 2-torsion as it contains the points
O, (0, 0), (−n, 0), and (n, 0). It turns out that these are all of the torsion points; i.e
Etors
n
∼= Z/2Z× Z/2Z. As a corollary, n is congruent if and only if rankQEn > 0. Using

this characterization along with the Hasse-Weil L-function and theory of half-integral
weight modular forms, Tunnell was able to derive the a remarkable classification of
congruent numbers. Assuming the weak Birch and Swinnerton-Dyer (BSD) conjecture,
he gives an equivalent condition for a number n to be congruent in terms of the number
of representations of n by two quadratic forms; this condition may be checked as quickly
as in time O(n

1
2 ) (for example, see [1][15].)

We would like to consider a natural generalization of the congruent number problem.
Namely, we will relax the condition that the triangle have a right angle and consider
more general angles. In analogy with the previous definition, let π

3
≤ θ ≤ π be an angle.

We say that a square-free integer n is θ-congruent if there exists a triangle whose largest
angle is θ, whose side lengths are rational, and whose area is n. In other words, there
exist rational a, b, c for which

a2 + b2 − 2ab cos θ = c2 ab sin θ

2
= n⇐⇒
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We say that an angle π/3 ≤ θ ≤ π is admissible if both sin θ and cos θ lie in Q.
Following the classical parameterization of rational points on the unit circle, define m
to be the slope of the line joining (−1, 0) to (cos θ, sin θ). Call a rational number m
admissible if it corresponds to an admissible angle. Note that m = 1 corresponds to
θ = π/2. Then the rational points on the circle are in one-to-one correspondence with
rational choices of m. It is easy to derive the formulae:

cos θ =
1−m2

1 +m2
sin θ =

2m

1 +m2
.

Henceforth the dependence of m on θ will be implicit. Thus, for every such rational
m >

√
3

3
we have a separate congruent number problem, with m = 1 corresponding to

the classical congruent number problem. We are almost in position to give an elliptic
curve criterion for the generalized congruent number problem. First we introduce some
language which pertains to the special case of certain angles. We say that an admissible
m ∈ Q is aberrant provided that m2 + 1 ∈ Q2. Otherwise, an admissible m is called
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generic. We can parameterize all aberrantm as follows. Begin with the parameterization
of Pythagorean triples of Euclid which states that any primitive triple is of the form
(u2 − v2, 2uv, u2 + v2) for relatively prime (u, v). It easily follows that all aberrant m

can be written in the form
(
u2−v2

2uv

)±1

for relatively prime integers u, v.
To each aberrant m, we can associate a (unique) square-free natural number n such

that nm ∈ Q2 and we call the pair (n,m) aberrant as well. Any other pair is termed
generic. To any admissible pair (n,m) we associate the elliptic curve En,θm given by the
following Weierstrass equation:

(1) En,θm : y2 = x
(
x− n

m

)
(x+ nm) .

Using this equation it is more “natural” to parameterize angles by the rational m
than an angle θm. For example, there is a duality between m and 1

m
in the aberrant

case which is much less transparent in the θ-characterization. There are two special
properties characterizing aberrant numbers which prompt their name. Note that there
are no congruent equilateral triangles. The following two theorems give the first example
of the special aberrant behavior as well as our first example of a situation which cannot
occur in the classical congruent number case (as

√
2 is irrational):

Theorem 1.1. If (n,m) is aberrant, then n is a θm-congruent number and n can be
represented by an isosceles θm-triangle.

In fact, we can give a characterization of all isosceles triangles appearing in the gen-
eralized congruent number problem.

Theorem 1.2. All isosceles triangles with rational side lengths and areas correspond to
the aberrant case.

One property of generalized congruent number case which remains the same as the
θ = π

2
case is the following correspondence which translates our problem into one of

computing Mordell-Weil groups.

Theorem 1.3. For any positive square-free integer n and any admissible angle θ we
have that n is θ-congruent if and only if En,θm has a rational point (x, y) with y 6= 0.
Moreover, if (n,m) is generic there is a 2-1 correspondence of triangles representing the
pair (n,m) and such points on En,θm. In fact, (x, y) and (x′, y′) correspond to the same
triangle if and only if x = x′ and y = ±y′.

In order to use the elliptic curve efficiently in our study we must first compute the
torsion subgroup of En,θm . This will allow us to give the desired equivalent condition in
terms of Mordell-Weil ranks. We prove the following classification:

Theorem 1.4. If (n,m) is aberrant, then Etors
n,θm

(Q) ∼= Z/2Z×Z/4Z. If (n,m) is generic,
then Etors

n,θm
(Q) ∼= Z/2Z× Z/2Z.
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Corollary 1.5. We have that (n,m) is a congruent pair if and only if (n,m) is aberrant
or rankQEn,θm(Q) > 0.

In this paper, we would like to analyze a different aspect of the problem from that
considered by Tunnell. Although it remains a difficult problem to determine general
conditions to test for congruent numbers (even parts of the classical congruent number
problem resolution remain conjectural), we are still able to make general statements
about the “distribution” of such points. There are two natural families to consider along
with the following questions.

Question 1. If we fix m and let the area n vary, how often is (n,m) congruent?

Question 2. If we fix the area n and let m vary, how often is (n,m) congruent?

For each area n, there is at least one angle making n a θm-congruent number. To
see this, note that (−n+2

2
, n

2−4
4

) is a rational point on En,n−2
4

with non-zero y-coordinate
unless n = 2. For n = 2, (9/2, 15) is a rational point on E2,4 so 2 is 4-congruent. A
natural question is if for each n there are infinitely many angles which make n congruent.
Even better, we would like to say as much as we can pertaining to approximately how
often numbers are congruent or not. To this end, we let hm(x) be the proportion of
positive square-free integers n not exceeding x for which (n,m) is a congruent pair and
vn(x) the proportion of m with height at most x for which (n,m) is a congruent pair.
More precisely,

(2) hm(x) :=
#{1 ≤ n ≤ x, : n is θm-congruent and n is square-free}

#{1 ≤ n ≤ x : n is square-free}

(3) vn(x) :=
#{m ∈ Q : h(m) ≤ n and n is θm-congruent}

#{m ∈ Q : h(m) ≤ n}
where for any rational number written in lowest terms h(a

b
) := max{|a|, |b|}. Then we

prove the following:

Theorem 1.6. Suppose the Shafarevich-Tate conjecture is true for all elliptic curves of
rank 0. Then for each ε > 0, if x�ε 0 then 1

2
− ε ≤ hm(x) < 1− ε

That is, when we fix the angle m and let the area n vary, at least 1/2 of the choices
for n are congruent and a positive density are non-congruent. Fixing n and letting m
vary, we also obtain the following:

Theorem 1.7. Suppose the Shafarevich-Tate conjecture is true for all elliptic curves of
rank 0. Then for each ε > 0, if x�ε 0 then 1

2
− ε ≤ vn(x) ≤ 1− ε.

The paper is organized as follows. In §2 we will prove Theorems 1.1-1.5, establishing
the equivalent condition for congruence in terms of ranks of elliptic curves. In §3, we
prove the density results Theorem 1.6 and Theorem 1.7. These rely on a theorem of
Yu for quadratic twists giving the upper bound in Theorem 1.7 and a remarkable new
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result of the Dokchitser brothers which proves the p-parity conjecture in the case when
p is odd (the case where p = 2 being previously solved by Monsky) in conjunction with
a paper of Helfgott providing sufficient conditions for algebraic families of elliptic curves
to have average root number zero [16],[5],[8],[11].

2. Proof of the Elliptic Curve Criterion and Computation of Torsion
Subgroups for En,θm.

In this section, we prove the theorems necessary to reduce the generalized congruent
number problem to one of computing the rank of En,θ. We begin by establishing the
connection between En,θ(Q) and congruent numbers.

2.1. Connecting En,θm to θm-Congruent Numbers. We begin with a proof of The-
orem 1.1. Suppose (n,m) is aberrant. Then as nm is a square, so is n

m
. It is simple to

check that the triangle with side lengths a = b =
√

n(m2+1)
m

, c = 2
√

n
m

has angle θm and
area n.

To finish the characterization of isosceles congruent number triangles in Theorem 1.2,
suppose that a = b. By the law of cosines

c2 = 2a2 − 2a2m
2 − 1

m2 + 1
= 4a2

(
1

m2 + 1

)
.

We can write m2 + 1 = (2a
c

)2. Now by the area formula we can rewrite n
m

= a2

1+m2 ,
establishing the aberrance of (n,m).

We proceed to establish the elliptic curve condition in the generic case as per Theorem
1.3. Thus, suppose n is θm-congruent. Then define (x, y) := ( c

2

4
, b

2c−a2c
8

). In the generic
case, the triangle cannot be isosceles by Theorem 1.2 and hence a 6= b giving y 6= 0. It
is trivial to verify that this point indeed lies on En,θm .

Conversely, given a rational point (x, y) with non-zero y coordinate, define a triangle
with side lengths

a =

∣∣∣∣n( x
m

+ xm)

y

∣∣∣∣ , b =

∣∣∣∣(x+ nm)(x− nm)

y

∣∣∣∣ , c =

∣∣∣∣x2 + n2

y

∣∣∣∣ .
Note that if (n,m) is an aberrant pair, then by Theorem 1.4 the torsion subgroup is
Z/2Z × Z/4Z. This is aberrant by Theorem 1.1 and evidently contains a torsion point
with y 6= 0, proving Theorem 1.3.

2.2. Computing the Torsion Subgroups. In this section we compute the torsion
subgroup of

En,θm : y2 = x(x− n

m
)(x+ nm) = x3 +

n(m2 − 1)

m
x2 − n2x.

First choose 0 6= α ∈ Z such that α2nm,α2nm3 are both integral. Then by the change
of variables (x, y) 7→ ((αm)−2x, (αm)−3y) this curve is isomorphic (over Q) to y2 =
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x3 + α2nm(m2 − 1)x2 − α4m4n2x. If we define M := nm3α2 and N := −nmα2, we can
write the curve in the form y2 = x3 + (M +N)x2 +MNx with M and N integral. Now
there is a complete characterization of torsion subgroups of curves of this form in [12].
Note that they all have full 2-torsion, so by Mazur’s Theorem the torsion subgroup is of
the form Z/2Z× Z/2nZ for n ∈ {1, 2, 3, 4}.

Theorem 2.1. (Ono [12]). The following criteria uniquely determine the torsion sub-
groups of E(M,N) : y2 = x3 + (M +N)x2 +MNx.

• E(M,N)tors contains Z/2Z × Z/4Z if M and N are both squares, or −M and
N −M are both squares or −N and M −N are both squares.
• E(M,N)tors ∼= Z/2Z× Z/8Z if there exists a non-zero integer d such that M =
d2u4 and N = d2v4, or M = −d2v4 and N = d2(u4 − v4), or M = d2(u4 − v4)
and N = −d2v4 where (u, v, w) forms a Pythagorean triple (i.e. u2 + v2 = w2).
• E(M,N)tors ∼= Z/2Z×Z/6Z if there exist integers a, b such that a

b
6∈ {−2,−1,−1

2
, 0, 1}

and M = a4 + 2a3b and N = 2ab3 + b4.
• Otherwise, E(M,N)tors ∼= Z/2Z× Z/2Z.

We continue by checking the conditions outlined there. To check if the torsion sub-
group contains Z/2Z×Z/4Z, note first that neither N nor −M can be a square as both
n,m are positive. Thus, the torsion subgroup will have a 4-torsion point if and only if
−N = nmα2 and M −N = α2nm(m2 + 1) are both squares. This is clearly equivalent
to the aberrant condition. Thus, in the generic case, there can be no 4-torsion.

Let us rule out the possibility of 8-torsion. Suppose the torsion subgroup is Z/2Z ×
Z/8Z. Then again by sign considerations neither N nor −M are squares and so this hap-
pens if and only if we can write M = d2(u4 − v4) and N = −d2v4 for a non-zero integer
d and a Pythagorean triple (u, v, w). In this case, we have M

N
= −m2 = v4−u4

v4
= 1− (u

v
)4

and so 1 + m2 is a rational fourth power. I claim that this is not possible. For sup-
pose 1 + ( c

d
)2 = ( e

f
)4 with c, d, e, f integral. Then (f 2c)2 + (f 2d)2 = (e2d)2 and so

f 4c2 = d2(e4 − f 4). But this forces e4 − f 4 to be a perfect square g2 and hence gives a
Pythagorean triple (g, f 2, e2), which is impossible as it is well-known that a Pythagorean
triple can contain at most one square (as was shown by Fermat).

To finish the characterization of the torsion subgroups, we have only to exlude the
possibility Z/2Z × Z/6Z. Suppose we have a, b as in the Theorem. In this case, if we
have M

N
= −a2

b2
a2+2ab
b2+2ab

= −m2 and so we can write a2+2ab
b2+2ab

= c2

d2
for c, d ∈ Z. By rear-

ranging and considering this as a quadratic equation in the variable a, by the quadratic
formula the discriminant must be integral and this gives that c4 + d4 − c2d2 must be a
perfect square. This is a special case of a well-studied class of equations. In particular,
Diophantine equations of the form x4 + nx2y2 + y4 = z2 have been studied intensely
for over 300 years. Fermat’s proof that there are no nontrivial integral solutions when
n = 0 is a classic example of infinite descent, and when n = −1 this equation is central
to the well-known proof that four perfect squares cannot lie in arithmetic progression.
The only integral solutions occur when cd = 0 or c2 = d2. An elementary proof of this
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fact may be found in [13]. Then if cd = 0, d 6= 0 and so c = 0 giving m = 0, which
is a contradiction. In the latter case, we also have that a2 = b2 and so m2 = 1 giving
m = 1. But the case m = 1 was already proven to have no 3-torsion in Lemma 1, being
the classical congruent number case.

3. Proof of Density Results

In this section we prove Theorems 1.7 and 1.8 describing the average behavior of
congruent numbers in one-parameter families. This will be done by computing averages
of root numbers and using the parity conjecture.

3.1. A Sufficient Condition for Lower Bounds. In order to describe the proof, we
first need to discuss a famous conjecture on the parity of ranks of elliptic curves. Let us
recall that every elliptic curve has an associated Hasse-Weil L-function which provides
the connection to modular forms in the Modularity Theorem of Wiles, Taylor, et. al
and whose value at s = 1 conjecturally (BSD) gives the rank of E. For each prime p,
let N(p) be the number of points (including the point at infinity) of the reduced curve
Ep. Then set a(p) := p+ 1−N(p). Finally, define the L-series by the Euler product:

L(E, s) :=
∞∑
n=1

a(n)

ns
=
∏
p|∆

1

1− a(p)p−s

∏
p-∆

1

1− a(p)p−s + p1−2s
,

where ∆ denotes the minimal discriminant of E. This L-function can be analytically
continued to an entire function, as proven by Wiles et al. It also has a special symmetry
which is expressed in the functional equation:

N
2−s
2

E (2π)s−2Γ(2− s)L(E, 2− s) = W (E)N
s
2
E (2π)−sΓ(s)L(E, s).

Here NE is the conductor of E and W (E) = ±1 is the root number of E. It is expected
that the root number controls the parity of the rank of E. Specifically, the following is
also an immediate consequence of BSD:

Conjecture. (Parity) For any elliptic curve E/Q, W (E) = (−1)rkQ(E)

In certain cases, the parity conjecture may be shown to be true unconditionally. In
particular, a powerful new result of Doskchitser proving the p-parity conjecture has the
following corollary:

Theorem 3.1. (Corollary 4.20 of Dokchitser [5]) If E/Q is an elliptic curve, either the
parity conjecture is true for E or X(E/Q) contains a copy of Q/Z.

Here X(E/Q) is the group of homogenous spaces for E/Q which have a solution in
every completion of Q modulo equivalence. Together with the Selmer group it measures
how badly the Hasse principle fails for E (i.e. the inability to lift solutions over every
completion to a solution over the global field). As a corollary to Theorem 3.1, we now
state our sufficient condition for the density lower bounds in Theorems 1.6 and 1.7.
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Theorem 3.2. If a family of elliptic curves over Q has average root number 0 and the
Shafarevich-Tate Conjecture is true for elliptic curves of rank 0, then the proportion of
rank 0 curves in this family is at most 1

2
.

Proof. If X(E)/Q is finite and rank(E(Q)) is zero, then E will have positive root num-
ber by the previous theorem. Given that the average root number is zero, the total
proportion of positive root number curves is 1

2
and so the proportion of rank 0 curves

cannot exceed this amount. �

3.2. Proof of Theorem 1.6. We are now in position to prove the bounds on the pro-
portion of quadratic twists with positive rank stated in Theorem 1.6. For the lower
bound, we recall the well-known fact that the average root number in families of qua-
dratic twists is 0. For the upper bound, we apply a theorem of Yu. This is proven by
computing the average 2-Selmer group size. The result follows from the Dokchitsers’
result and the proof of the p-parity conjecture for the case p = 2 [11].

Theorem 3.3. (Yu [16]) Let E/Q be an elliptic curve with torsion subgroup containing
Z/2Z× Z/2Z. Then a positive proportion of quadratic twists have rank 0.

By Theorem 1.4, our curves always satisfy this condition as (m, 1) is never aberrant
by the parameterization of all aberrant pairs stated in the introduction.

3.3. Proof of Theorem 1.7. To prove the lower bound on the proportion of positive-
rank curves in the family of curves obtained by fixing the area n, we need a more general
theorem describing average root numbers in elliptic fibrations. Although in our case the
following conjectures will hold unconditionally, let us state the following hypotheses
which relate to classical arithmetic conjectures.

Hypothesis. (A) Let P (x, y) be a homogenous polynomial. Then only for a zero pro-
portion of all pairs of coprime integers (x, y) do we have a prime p > max{x, y} such
that p2|P (x, y).

It is believed that this is true for all such square-free P . In particular, this is implied
by the abc-conjecture [7]. Fortunately in our case, it has been proven unconditionally
true whenever P has no irreducible factor of degree exceeding 6 [10]. Another hypothesis
we will need is:

Hypothesis. (B) Let λ(n) :=
∏
p|n

(−1)νp(n) be the Liouville function. Then λ(P (x, y))

has strong zero average over Z2.

Chowla has conjectured that this holds for all non-constant, square-free homogenous
polynomials P [2]. The prime number theorem is essentially equivalent to the case where
deg(P ) = 1, and it has been proven unconditionally whenever deg(P ) = 1, 2, 3 [9].
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Now if we have an elliptic curve E over Q(t), we can form two polynomials formed by
a product over the places of bad reduction based on type:

ME :=
∏

E has mult. red. at ν

Pν , BE :=
∏

E has q. bad red. at ν

Pν .

Here Pν := y if ν is the infinite place and otherwise Pν := ydeg(Q)Q(x
y
) for the irreducible

polynomial Q inducing ν. We also say a curve has quite bad (q. bad) reduction at a
place if every quadratic twist also has bad reduction at the same place. We are ready
to state the sufficient conditions for computing our average of root numbers:

Theorem 3.4. (Helfgott [8]) Let E be an elliptic curve over Q(t). Suppose ME 6= 1 (i.e.
E has a point of multiplicative reduction). Suppose further that Hypothesis A holds for
BE and Hypothesis B holds for ME . Then the strong average over Q of W (Et) of the
fibres exists and is 0.

Let us observe how this applies to our case. Our family of elliptic curves with m
varying is an elliptic curve over Q(t) with t = m. First we calculate the usual constants
associated to this curve:

c4 =
16n2(m2 −m+ 1)(m2 +m+ 1))

m2
, c6 =

−32n3(m− 1)(m+ 1)(m2 + 2)(2m2 + 1)

m3

∆ =
16n6(m2 + 1)2

m2

Thus, the curve has bad reduction at three places: {∞,m,m2 + 1}. By checking the
valuation criteria for reduction type, we find that ME = x2 + y2 and BE = xy(x2 + y2).
From the above remarks, the required hypothesis on ME , BE hold unconditionally and
so Helfgott’s theorem applies to show the strong average of root numbers is zero. The
exact statement of what strong average means is complicated, but it is a certain notion
of average which does not depend on which intervals in Q we sample or how we add
terms (a precise definition may be found in Helfgott). In particular it is clearly a strict
enough notion to give us the conditions we need to apply our Lemma and conclude the
truth of Theorem 1.7.

3.4. Discussion of Conjectural Densities. Although we are only able to bound the
densities as in Theorems 1.6 and 1.7, in fact much more is believed to be true. For
example, we have the following well-known hypothesis

Conjecture. (Goldfeld [6]) For any family of quadratic twists, the proportion of curves
with rank 0 is 50% and the proportion of curves with rank 1 is 50%. All higher ranks
occur only with density 0.

In particular, for any family of quadratic twists and any other “reasonable” family of
curves such as the second family with the area n fixed and the angle m varying, it is
believed that a similar heuristic should hold. In particular, we make the following:
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Conjecture 1. For each positive, square-free integer n, (n,m) is not a congruent pair
for a positive proportion of angles m.

For the family of curves we are considering, the generic rank is 0. The following is a
plausible conjecture:

Conjecture 2. (Density). Let E be an elliptic curve over Q(t) and generic rank n.
Then only a zero proportion of fibers have rank at least n+ 2.

We also say that a curve has elevated rank if only finitely many fibers have generic
rank. Thus, our conjecture implies that the family of curves does not have elevated rank.
For suitably manipulated families, the rank has been shown to be elevated (see [3] for
a discussion of known methods for constructing examples). All such proofs rely heavily
on the fact that these families are isotrivial, meaning that the j-invariant j(E) ∈ Q does
not depend on t. It is believed no non-isotrivial families can have elevated rank. In
particular an arithmetic conjecture known as the square-free-conjecture implies that the
average root number of a non-isotrivial family is not ±1 [3]. Thus, our conjecture would
follow from the square-free and density conjectures (assuming the parity conjecture for
rank 0 curves). If the full parity conjecture is further assumed, there would be no non-
isotrivial families of elevated rank over Q.

We also note that, assuming the parity conjecture is true for rank 1 curves, the
conjecture would follow if we could bound the average rank strictly by 3

2
. If this could

be shown it would constitute the first example of a non-quadratic twist elliptic fibration
which is known to have average rank not exceeding 3

2
. We can say, assuming a few

conjectures such as BSD and the Generalized Riemann Hypothesis, that a Theorem of
Silverman tells us that the average rank is no larger than 5

2
[14]. Thus, although the

conjecture is almost certainly true, a powerful new theorem would be required to say
this with certainty. We conclude with a small table of data illustrating the plausibility
of the conjecture as computed in Sage.

Table 1. Ranks for m = 1, 2, . . . , 100

rank=0 1 2 3
n=1 51 42 6 1
n=2 53 40 7 0
n=3 40 53 7 0
n=5 37 55 8 0
n=6 38 56 6 0
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