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1. Determinants as a criterion for detecting invertibility

We next show a few very important properties of determinants.

Theorem. The following hold for any n× n matrices A,B.

(1) If A has a row of zeros, then detA = 0.
(2) det(AB) = detA · detB.
(3) A is invertible if and only if detA 6= 0.
(4) If A is invertible, then det(A−1) = (detA)−1.

Proof. (1): If the i-th row ri of A is zero, then cri = ri for any c, so that for a fixed
c 6= 0, using mulilinearity of the determinant as a function on the rows of A, we have

detA = det(r1, . . . , ri, . . . , rn) = det(r1, . . . , cri, . . . , rn) = c det(r1, . . . , ri, . . . , rn) = c detA,

which implies detA = 0.
(2):
We first show it when A = E is an elementary matrix. By the properties of det we

showed before, detEB = detB,− detB, c detB, depending on whether E corresponds
to adding a multiple of one row to another row, switching two rows, or multiplying a
row by a constant, respectively. It is also obvious that detE = 1,−1, c accordingly,
as E is obtained by performing the same elementary row operation on In, which has
determinant 1.

In general, there are two cases. If A is invertible, by our previous theorem, A is
a product of elementary matrices, so by applying the argument in the last paragraph
repeatedly, the result follows. On the other hand, if A isn’t invertible, then the RREF
of A isn’t In, meaning that there isn’t a pivot in some row, meaning that A has a row
of zeros. This means that there are elementary matrices Ej for which E1 · · ·EkA has a
row of zeros, and by the argument in the last paragraph and by part (1), the product
det(E1) · · · det(Ek) det(A) = 0. As the determinant of an elementary matrix is never
zero, we find that detA = 0. We are done if we can show detAB = 0. This follows since
E1 · · ·EkA has a row of zeros, and so E1 · · ·EkAB has a row of zeros as well.
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(3): If A is invertible, then it is a product of elementary matrices, and so by (2) has
non-zero determinant. Conversely, if A isn’t invertible, then we saw in the proof of (2)
that detA = 0.

(4): By definition, In = AA−1, and so by (2), we have det(In) = 1 = detA detA−1,
which implies the claim.

�

2. Matrix transposes

Given any matrix A of size m× n, there is a matrix AT , called the transpose of A,
which has size n×m. This is obtained by reflecting A across its main diagonal. Another
way of thinking is that the rows of one are the columns of the other. Formally, we have
the following.

Definition. For any matrix A of size m × n, the transpose of A, written AT , is the
n×m matrix with

(AT )ji = Aij.

Example. If

A =

(
1 2 3
4 5 6

)
,

then

AT =

1 4
2 5
3 6

 .

Example. For any matrices A,B of the same size, and for any constant c, we have

(A + B)T = AT + BT ,

(cA)T = c(AT ),

and

(AT )T = A.

Example. If a, b ∈ Rn are vectors, thought of as columns, then the dot product may be
expressed

a · b = aT b.

Transposes satisfy a property not unlike the socks and shoes property for inverses.

Lemma. For any m × n matrix A and any n × ` matrix B, we have (AB)T = BTAT .
More generally, we have (whenever both sides make sense):

(A1 . . . Ak)T = AT
k . . . AT

1 .
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Proof. It is enough to show the first claim, as the general claim follows by repeatedly
applying the general claim with k = 2. This is just an explicit calculation:

((AB)T )ij = (AB)ji =
n∑

k=1

AjkBki =
n∑

k=1

BkiAjk =
n∑

k=1

(BT )ik(AT )kj = (BTAT )ij.

�

Transposes also play nicely with determinants.

Lemma. For any n× n matrix A,

det(AT ) = detA.

Proof. There are two cases. If A is invertible, then A is a product A = E1 · · ·Ek of
elementary matrices. Thus, AT = ET

k · · ·ET
1 . As a determinant of a product is the

product of determinants, it is enough to show that detET = detE for any elementary
matrix. Indeed, if E switches two rows, or if E multiplies a row by a constant, then
E = ET , so their determinants are clearly equal. If E adds a multiple of one row to
another, then detE = 1, and ET is another elementary matrix of the same type, so
det(ET ) = 1 as well.

Now, if A isn’t invertible. then AT isn’t either, for if it was, then ATB = In implies
(ATB)T = BT (AT )T = BTA = In, which implies that A is invertible, which is a contra-
diction. (If you want to be precise for the moment and check the equation BAT = In
as well, you can, yielding that BTA = ABT = In, which was our original definition of
invertible). Thus, the determinants of both A and AT are zero. �

This result is very handy in many computations, as it allows us to think of columns
instead of rows, which may be more convenient for explicit examples. In particular, we
have the following corollary.

Theorem. The determinant is also a multilinear, alternating function of the columns
of a matrix.

In particular, any properties you used regarding elementary row operations, hold true
in exactly the same way if we replace the word “row” everywhere with “column”. For
example, switching two columns of a matrix multiplies the determinant by −1.

3. Minors and cofactors

Our definition of determinants is really, really, tedious to check for large matrices. The
original definition requires one to evaluate nn terms, while the Leibniz formula, which
got rid of lots of terms by the alternating property, still requires one to evaluate n! terms.
This still grows exponentially with n. However, the determinant can be evaluated in
polynomial time. So, the definitions we have given are ideal for proving theorems, but
not ideal for computations. In general, somewhat like integration, finding determinants
of large matrices efficiently, or finding closed formulas for determinants of infinite families
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of matrices is a bit of an art form. Many techniques exist, including one very handy one
by Charles Dodgson (aka Lewis Carroll, of Alice in Wonderland fame).

We will now describe one method which is very widely useful, and so you never have
to enumerate permutations to compute determinants again.

Definition. Given an n× n matrix A, the (i, j)-th minor, denoted Aij, is the determi-
nant of the (n− 1)× (n− 1) matrix obtained from A by deleting the i-th row and the
j-th column. Similarly, the (i, j)-th cofactor Cij is defined in terms of the minor by

Cij = (−1)i+jAij.

Example. For

A =

1 2 3
4 5 6
7 8 9

 ,

we have

A23 = det

(
1 2
7 8

)
= 8− 14 = −6.

We also find C23 = (−1)2+3(−6) = 6.

Next time, we will see how these minors give a very simple, easily evaluated expression
for determinants of matrices.
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