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1. Linear equations

We now switch gears to discuss the topic of solving linear equations, and more inter-
estingly, systems of them.

Definition. A linear equation in the variables x1, . . . xn is an equation of the form

a1x1 + . . . anxn = b

with a1, . . . an, b ∈ R.

There is not much to say about the solution to a single equation. It is always the
set of points on an (n − 1)-dimensional “hyperplane” in Rn, for example it is a point
is n = 1, a line if n = 2, and a plane if n = 3. The situation is more interesting if we
discuss the solution sets of systems of equations. For example, we may want to find all
x1, . . . xn which satisfy the following m linear equations simultaneously:

a1,1x1 + a1,2x2 + . . . a1,nxn = b1
a2,1x1 + a2,2x2 + . . . a2,nxn = b2

...

am,1x1 + am,2x2 + . . . am,nxn = bm.

It is somewhat tedious to write the xi’s and the plus signs, etc. at every step of our
analysis, as well as to always write the commas in the subscripts of the ai,j’s. We will
thus use an (augmented) matrix (a matrix is simply a rectangular array of numbers, and
augmented just means that we will insert a bar conveniently separating different types
of information) the as a bookkeeping tool to represent the system above by

a11 a12 · · · a1n b1
a21 a22 · · · a2n b2
...

...
...

...
...

am1 am2 · · · amn bm

 .

One can also think of this geometrically, in that we are trying to identify the intersection
points of m hyperplanes. Of course, the algebraic interpretation is more convenient for
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working with, and we are interested in finding a simple algorithm which will solve all
such systems.

Example. Consider the system


x + y + z = 2

2x− y + z = 6

3z + y − z = 4.

This is represented by the augmented matrix

 1 1 1 2
2 −1 1 6
3 1 −1 4

 ,

and solving it is equivalent to finding the intersection points between three planes in R3.
We could already start reducing these equations by hand, but the question is, how can
we reduce this to a routine, simple method?

2. Row reduction

The basic idea is to use what are known as elementary row operations. These can
be applied to any (augmented or ordinary) matrix, and consist of the following:

(1) Switch any two rows. If we swap rows (i) and (j), we will denote this by (i)↔ (j).
(2) Add a multiple of one row to another. If we add c(j) to the row (i), we will

denote this operation by (i) 7→ (i) + c(j).
(3) Multiply a row by a non-zero constant. If we multiply row (i) by c, we will

denote this operation by (i) 7→ c(i).

The point is (and you should check!) that if we perform an elementary row operations
on an augmented matrix, then it gives a new augmented matrix which corresponds to a
system of equations with the same solution set.

Example. In the example above, we can use elementary row operations to simplify the
system as follows:
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 1 1 1 2
2 −1 1 6
3 1 −1 4

 (2)7→(2)−2(1), (3)7→(3)−3(1)−→

 1 1 1 2
0 −3 −1 2
0 −2 −4 −2


(3)7→− 1

2
(3)

−→

 1 1 1 2
0 −3 −1 2
0 1 2 1

 (2)↔(3)−→

 1 1 1 2
0 1 2 1
0 −3 −1 2


(1)7→(1)−(2), (3)7→(3)+3(2)−→

 1 0 −1 1
0 1 2 1
0 0 5 5

 (3)7→ 1
5
(3)

−→

 1 0 −1 1
0 1 2 1
0 0 1 1


(1)7→(1)+(3) (2)−2(3)−→

 1 0 0 2
0 1 0 −1
0 0 1 1

 .

From this, we can directly read off the solution to our system as

x = 2, y = −1, z = 1.

Of course, you can go back and plug these numbers into the original system to check that
they do indeed solve it.

3. Gauss-Jordan elimination

The ideas behind this example can be extended to a general procedure, called row
reduction.

Procedure (Gauss-Jordan method). To solve a system of linear equations:

(1) Write down the corresponding augmented matrix.
(2) Use elementary row operations to put it in reduced row echelon form (RREF).

This is a matrix which satisfies:
(a) All rows of only 0’s are grouped together at the bottom of the matrix.
(b) In every non-zero row, the left-most entry is 1. We refer to this entry as a

pivot of the matrix.
(c) Each pivot is in a column with all other values in the column equal to zero.
(d) The pivot in any row is to the left of any pivots below it.

(3) Determine the solution set as follows.
(a) If the last non-zero row is of the form (0 . . . 0|1), i.e there is a pivot in the

last column, then the system is inconsistent, and there are no solutions.
(b) Otherwise, the system is consistent, there will be two possibilities; there is

either one solution or infinitely many solutions. If there is a pivot in each
column before the bar | (like in the last example), then the last column directly
gives the unique solution. If there isn’t a pivot in each “variable column”,
there will be infinitely many solutions. In this case, call each variable which
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corresponds to a pivot a pivotal unknown and each other variable a free
unknown. The free unknowns can then be assigned arbitrary values, after
which we solve for the pivotal variables.

As always, this is made more clear by looking at explicit examples. We have already
seen in the example above how to row reduce and interpret a system with no free
unknowns and a unique solution. We now want to solve one example of the other
possibilities: when there are infinitely many solutions, and when there are no solutions.

�

As is often said, mathematics is not a spectator sport. In particular, with things like
row reduction, the only way to learn it well is to do enough examples by hand until it
feels like second nature.

Example. We solve the system of equations
x1 + 2x2 + x3 + x4 + x5 = 1

−3x1 − 6x2 − 2x3 − x5 = 0

2x1 + 4x2 + 2x3 + x4 + 3x5 = −3.

We first represent this by the matrix 1 2 1 1 1 1
−3 −6 −2 0 −1 0
2 4 2 1 3 −3


and row reduce 1 2 1 1 1 1

−3 −6 −2 0 −1 0
2 4 2 1 3 −3

 (2)7→(2)+3(1), (3)7→(3)−2(1)−→

 1 2 1 1 1 1
0 0 1 3 2 3
0 0 0 −1 1 −5


(1)7→(1)+(3), (2)7→(2)+3(3), (3)7→−(3)−→

 1 2 1 0 2 −4
0 0 1 0 5 −12
0 0 0 1 −1 5


(1)7→(1)−(2)−→

 1 2 0 0 −3 8
0 0 1 0 5 −12
0 0 0 1 −1 5

 .

We have now reached the reduced row echelon form. There are pivots in the first, third,
and fourth columns, and so x1, x3, x4 are our pivotal variables, and x2 and x5 are both
free. Thus, we set x2 = t2, x5 = t5 where t2 and t5 are arbitrary real numbers. We now
solve for the pivotal variables, yielding

x1 + 2t2 − 3t5 = 8, x3 + 5t5 = −12, x4 − t5 = 5.
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Thus, the final solution set is 

x1 = 3t5 − 2t2 + 8

x2 = t2
x3 = −12− 5t5
x4 = 5 + t5

x5 = t5.

These are parametric equations for a plane in five-dimensional space.

Example. We solve the system 
x + 2y + z = 2

2x + y + 2z = 1

5x + 4y + 5z = 2.

This corresponds to the matrix  1 2 1 2
2 1 2 1
5 4 5 2

 ,

which reduces as 1 2 1 2
2 1 2 1
5 4 5 2

 (2)7→(2)−2(1) (3)7→(3)−5(1)−→

 1 2 1 2
0 −3 0 −3
0 −6 0 −8


(3)7→(3)−2(2)−→

 1 2 1 2
0 −3 0 −3
0 0 0 −2

 .

We now stop, as the last row corresponds to the equation 0x+ 0y + 0z = 0 = −2, which
is clearly nonsense. Hence, there are no solutions.

4. Linear combinations

An important concept in linear algebra is the following.

Definition. A vector v is a linear combination of the vectors v1, . . . , vn if there are
constants c1, . . . , cn ∈ R such that

v = c1v1 + . . . cnvn.

Given a collection of vectors v1, . . . vn, the span of them, written span(v1, . . . , vn), is the
set of all linear combinations of the vectors v1, . . . , vn.
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We now require a second way to think about vectors. Instead of thinking of vectors
as tuples such as u = (u1, . . . , un), we can think of them as n× 1 matrices such asu1

...
un

 .

Returning to systems of linear equations, we can write a system like
x− y + 3z = 2

x + z = 0

y − z = 1

using vectors as

x

1
1
0

 + y

−1
0
1

 + z

 3
1
−1

 =

−2
0
1

 .

In general, a system of linear equations
a11x1 + a12x2 + . . . a1nxn = b1
a21x1 + a22x2 + . . . a2nxn = b2

...

am,1x1 + am,2x2 + . . . am,nxn = bm.

has a solution (i.e., is consistent) if and only if b1
...
bm

 ∈ span (a1, a2, . . . an) ,

where a1, . . . an are the m-dimensional column vectors of the corresponding matrix:

ai =

a1i
...

ami

 .

Example. We will determine whether v =

2
1
1

 is a linear combination of

v1 =

 3
−1
2

 , v2 =

1
2
1

 , v3 =

6
5
5

 .
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This is the same as asking whether there is a solution to the equation

x1v1 + x2v2 + x3v3 = v ⇐⇒


3x1 + x2 + 6x3 = 2

−x1 + 2x2 + 5x3 = 1

2x1 + x2 + 5x3 = 1.

We row reduce this as follows: 3 1 6 2
−1 2 5 1
2 1 5 1

 (1)↔(2), (1)7→−(1)−→

 1 −2 −5 −1
3 1 6 2
2 1 5 1


(2)7→(2)−3(1), (3)7→(3)−2(1)−→

 1 −2 −5 −1
0 7 21 5
0 5 15 3

 (2)7→ 1
7
(2)

−→

 1 −2 −5 −1
0 1 3 5

7
0 5 15 3


(3)7→(3)−5(2)−→

 1 −2 −5 −1
0 1 3 5

7
0 0 0 3− 25

7

 .

Looking at the last row, we don’t need to finish finding the RREF, as we already see that
the system is inconsistent. Hence, v is not a linear combination of v1, v2, v3.

Finally, there is one special case of spans of vectors which we will be particularly
interested in throughout this course.

Definition. Given any matrix A, the column space is the span of its column vectors.

Example. Here we find the column space of

A =

1 0
0 1
2 0

 .

The column vectors of A are v1 =

1
0
2

, v2 =

0
1
0

. A generic vector

x
y
z

 ∈ R3 is in

the column space if and only if there are constants c1, c2 such that

c1

1
0
2

 + c2

0
1
0

 =

x
y
z

 ⇐⇒


c1 = x

c2 = y

2c2 = z,

which corresponds to the matrix  1 0 x
0 1 y
2 0 z

 .
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Row reducing this matrix gives  1 0 x
0 1 y
0 0 z − 2x

 .

Now this system has a solution if and only if z − 2x = 0, or z = 2x. Thus, the column
space, which is the space of linear combinations of v1, v2 in R3, is the plane z = 2x.
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