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1. Lines in R3

We can now use our new concepts of dot products and cross products to describe some
examples of writing down geometric objects efficiently. We begin with the question of
determining equations for lines in R3, namely, real three-dimensional space (like the
world we live in).

Aside. Since it is inconvenient to constantly say that v is an n-dimensional vector, etc.,
we will start using the notation Rn for n-dimensional vectors. For example, R1 is the
real-number line, and R2 is the xy-plane.

Our methods will of course work in the plane, R2, as well. Instead of beginning with
a formal statement, we motivate the general idea by beginning with an example. Every
line is determined by a point on the line and a direction. For example, suppose
we want to write an equation for the line passing through the point A = (1, 3, 5) and
which is parallel to the vector (2, 6, 7). Note that if I took any non-zero multiple of v,
the following argument would work equally well. Now suppose that B = (x, y, z) is an
arbitrary point. Then

B is on L ⇐⇒
−→
AB points in the direction of v ⇐⇒

−→
AB = tv, t ∈ R

⇐⇒ (x− 1, y − 3, z − 5) = (2t, 6t, 7t) ⇐⇒


x = 1 + 2t

y = 3 + 6t

z = 5 + 7t

for t ∈ R.

These are the parametric equations for L. The general formula isn’t much harder
to derive.

Theorem. The line in R3 through the point A = (x0, y0, z0) in the direction of v =
(a, b, c) is given by the set of equations

x = x0 + at

y = y0 + bt

z = z0 + ct,
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where t runs over all real numbers.

Similarly, in R2, if A = (x0, y0) is a point on the line and v = (a, b) is a parallel vector,
we arrive at the parametric system {

x = x0 + at

y = y0 + bt,

which is equivalent after solving to t to the symmetric form

t =
x− x0

a
=

y − y0
b

,

which is in turn equivalent to the usual equation for a line that you are familiar with.

Example. Find the line through the points A = (2,−1, 3) and B = (1, 4,−3).

Solution. We already have a point on the line (let’s take A), so we need to find a vector

pointing in its direction. we can take v =
−→
AB = (−1, 5,−6). This gives the system

x = 2− t

y = −1 + 5t

z = 3− 6t.

2. Planes in R3

We now move up one dimension. In order to find equations for a plane in R3, we
need a normal vector n = (a, b, c), which is orthogonal (or normal, or perpendicular)
to every vector in the plane, and a point A = (x0, y0, z0) on the plane. In fact, the set of
points on a plane is the same as the set of points whose vectors towards the fixed point
A are orthogonal to n. (see the following diagram).

A

n−→
AB
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Thus, for a generic point B = (x, y, z), we have

B is on the plane ⇐⇒
−→
AB ⊥ n ⇐⇒

−→
AB · n = 0

⇐⇒ (x− x0, y − y0, z − z0) · (a, b, c) = 0.

This shows the following.

Theorem. Given a point A = (x0, y0, z0) on a plane and a normal vector n = (a, b, c)
for the plane, the equation for the plane is given by

a(x− x0) + b(y − y0) + c(z − z0) = 0.

Example. Find the plane containing the three points

A = (1,−2, 0), B = (3, 1, 4), C = (0,−2, 2).

Solution. We already have the point A = (1,−2, 0) on the plane, so we just need to
find a normal vector. We first find two vectors in the plane, say

−→
AB = (2, 3, 4),

−→
AC = (−1, 0, 2).

A normal is then given by the cross product, since we saw last time that it is orthogonal
to both vectors in the cross product. Thus, we can choose as a normal

n =
−→
AB ×

−→
AC = (3 · 2− 4 · 0, 4 · (−1)− 2 · 2, 2 · 0− 3 · (−1)) = (6,−8, 3).

Hence, we can take as an equation

6(x− 1)− 8(y + 2) + 3z = 0.

Remark. You can easily check your answer (which is always a good idea) by plugging
in the three points above into this equation.

Example. Find the intersection line between the two planes

x− 2y + z = 6, y + z = 3.

Solution. The normal vectors are n1 = (1,−2, 1) and n2 = (0, 1, 1) (read off the co-
efficients of x, y, z in both). The line, lying in both planes, must be orthogonal to both
normals, and so parallel to the cross product

n1 × n2 = (−3,−1, 1).

To find a point on the line, we can choose any solution to the system of equations{
x− 2y + z = 6

y + z = 3.

We can freely choose y = 0, which implies z = 3 and x = 3, giving the point A = (3, 0, 3).
Thus, the line can be written as

x = 3− 3t, y = −t, z = 3 + t.
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Example. Find the distance between the point A = (1, 0, 2) and the plane x−2y+z = 9.

Solution. The idea will be that in general, we first want to find line from A to the nearest
point P on the plane (nearest to A, that is). As in the following generic diagram, this
will be in the direction of the normal vector and passes through A.

A

P

n

In our specific case, the normal vector is n = (1,−2, 1), and of course passes through
the point A = (1, 0, 2). Thus, this line is

L =


x = 1 + t

y = −2t

z = 2 + t.

The point P lies on both L and the plane, so we solve the system of equations
x− 2y + z = 9

x = 1 + t

y = −2t

z = 2 + t

=⇒ 1+t+4t+2+t = 9 =⇒ 6t = 6 =⇒ t = 1 =⇒ P = (2,−2, 3).

Thus, the distance is given by∣∣∣−→AP ∣∣∣ =
√

12 + 22 + 12 =
√

6.
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