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1. Compositions of linear transformations

In general, when we define a new mathematical object, one of the first questions we
may ask is how to build new examples of that object. We have just seen some of the most
basic properties of linear transformations, and how they relate to matrix multiplication.
In order to use our new theory, it would be nice to be able to generate many new
examples of linear transformations. Since linear transformations are just functions from
a set of vectors V to a set of vectors W , in the right circumstances we can get a new
function from two old ones just by taking composition of functions.

Definition. Given linear transformations T1 : V → W and T2 : W → W ′ for vector
spaces V,W,W ′, their composition T = T2T1 : V → W ′ is their composition as functions.
That is, if v ∈ V , then T (v) = T2(T1(v)) ∈ W ′.

On the homework, you showed that this composition is indeed a linear map. We
have also seen that linear transformations are related to matrices. Suppose that the
dimensions of V,W,W ′ are n,m, p. Then after choosing ordered bases for these spaces,
the associated matrix of T1, call it A1 has size m× n, and the matrix associated to T2,
call it A2 has size p×m. Moreover, the associated matrix A to the composition has size
p× n. Thus, if we trace the function composition through these matrices, we find that
we are taking a map determined by an m× n matrix A1 and a p×m matrix A2 to get
a matrix A of size n× p. But, the ordinary matrix product A2A1 is also such a matrix.
You should therefore be suspicious that maybe A2A1 = A. Indeed, the following result
shows that this is the case.

Theorem. Given linear transformations T1 : V → W and T2 : W → W ′ for vector spaces
V,W,W ′, suppose that we fix ordered bases B,C,D of V,W,W ′ respectively. Then we
have

[T2T1]
D
B = [T2]

D
C · [T1]CB,

where the · on the right hand side is ordinary matrix multiplication.

Proof. Suppose that the dimensions of V,W,W ′ are n,m, p, respectively, that ordered
bases are given by B = {vi}, C = {wi}, D = {w′i}, and that [T1]

C
B = A1, [T2]

D
C = A2,
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[T2T1]
D
B = A. Further call the components of the matrix A1 by aij and the components

of A2 by bij. Then, denoting T = T2T1, for any basis vector vk ∈ V we have

T (vk) = T2(T1(vk)).

Now T1(vk) has coordinate vector

A1 · [vk]B = A1 · ek =
m∑
i=1

aikei,

by the definition of A1 (note that the ek in the second term is an element of Rn, while the
ei in the last term is in Rm). Applying T2 to the corresponding image now corresponds
to multiplying on the left by A2, giving

A2

(
m∑
i=1

aikei

)
=

m∑
i=1

aikA2ei =
m∑
i=1

aik

p∑
j=1

bjiej.

Rearranging yields
p∑

j=1

(
m∑
i=1

bjiaik

)
ej,

which by definition of the matrix product is
p∑

j=1

(A2A1)jkej =

p∑
j=1

Ajkej = A · ek.

But this is just the k-th column of A. Hence, the image of vk under the linear transfor-
mation corresponding to A2A1 is T (vk). Thus, the linear transformations corresponding
to direct function composition and to matrix multiplication have the same effects on the
basis elements vk, and hence are the same linear transformations.

�

Example. Recall the linear map Tϑ : R2 → R2 which rotates vectors be an angle 0 ≤
ϑ < 2π. We saw before that the corresponding matrix for this linear transformation is

Aϑ =

(
cosϑ − sinϑ
sinϑ cosϑ

)
.

The composition two rotations by angles ϑ and ϑ′, that is, Tϑ′Tϑ is clearly just the
rotation Tϑ+ϑ′. Hence, we must have

Aϑ+ϑ′ = Aϑ′Aϑ.

The left hand side of this equation is just(
cos(ϑ+ ϑ′) − sin(ϑ+ ϑ′)
sin(ϑ+ ϑ′) cos(ϑ+ ϑ′)

)
,
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and the right hand side is(
cosϑ′ − sinϑ′

sinϑ′ cosϑ′

)(
cosϑ − sinϑ
sinϑ cosϑ

)
=

(
cosϑ cosϑ′ − sinϑ sinϑ′ − cosϑ′ sinϑ− cosϑ sinϑ′

cosϑ sinϑ′ + cosϑ′ sinϑ − sinϑ sinϑ′ + cosϑ cosϑ′

)
.

Comparing corresponding entries, we find that the claim that Tϑ′Tϑ = Tϑ+ϑ′ is equivalent
to the well-known addition formulas

cos(ϑ+ ϑ′) = cosϑ cosϑ′ − sinϑ sinϑ′,

sin(ϑ+ ϑ′) = cosϑ′ sinϑ+ cosϑ sinϑ′.

2. Change of Basis

As we have seen, it is possible to take many possible bases of the same vector space
and work with different coordinate systems for each. Our association of linear trans-
formations to matrix multiplication was nice, but it required us to fix bases of all our
vector spaces. We now consider the problem of taking a matrix representation for one
basis and switching to different bases. This is called a change of basis. Such changes of
variables are frequently useful; for example, you saw in your calculus class that changing
variables (u-subsitution) often makes many integrals easier to compute.

To explain our main results about change of coordinate systems in his context, suppose
that I have two ordered bases B,B′ of a vector space V . Then I can use the most basic
linear operator on V , IV : V → V which acts as the identity: IV (v) = v for all v ∈ V .
If I represent this matrix with the input vector space V having basis B, and the output
vector space (also V ) having basis B′, I get the change of basis matrix

Q = [IV ]B
′

B .

If V is n-dimensional, by definition this is the n× n matrix Q whose j-th column is the
coordinate vector for the j-th basis element of B in terms of the other basis B′. Note
also that Q is always invertible and in fact that its inverse Q−1 is the change of basis
matrix changing from B′-coordinates to B-coordinates.

Example. We saw before by directly writing the corresponding systems of linear equa-
tions that if we take a vector x = (x1, . . . , xn) ∈ Rn (i.e., with respect to the standard
ordered basis E = {e1, . . . , en}), then the coordinate vector [v]B with respect to a basis
B = (v1, . . . , vn) is just A−1v where A is the matrix whose j-th column is vj. This is
just a special case of the above procedure, as we are changing coordinates from E to B,
and A = [IV ]EB (as the j-th column is supposed to be the j-th vector in B in the standard
basis E). Thus, A−1 = [IV ]BE.

Example. Suppose V = R2, and consider the bases B = {(2, 4), (3, 1)}, B′ = {(1, 1), (1,−1)}.
Then we find (directly or by solving the corresponding systems of linear equations) that

(2, 4) = 3(1, 1) + (−1) · (1,−1), (3, 1) = 2 · (1, 1) + 1 · (1,−1),
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and hence [(2, 4)]B′ = (3,−1) and [(3, 1)]B = (2, 1). Thus, the corresponding matrix,
which changes coordinates from B to B′ is the matrix with these vectors as columns,
namely

Q =

(
3 2
−1 1

)
.

For example, if we consider the vector (5, 5) ∈ R2, then in B-coordinates it is [(5, 5)]B =
(1, 1), so that in B′-coordinates we have

[(5, 5)]B′ = Q · [(5, 5)]B =

(
3 2
−1 1

)(
1
1

)
=

(
5
0

)
.

Indeed, this just says that (5, 5) = 5 · (1, 1) + 0 · (1,−1), which is true.

We can now describe what happens to the matrix representation of a linear operator
T : V → V if we change the coordinates of V from B to B′.

Theorem. If T : V → V is a linear operator and B,B′ are ordered bases of V , then

[T ]B
′

B′ = Q[T ]BQ
−1,

where Q is the change of basis matrix from B to B′.

Proof. Let IV be the identity transformation on V . Further suppose that B = {vi} and
B′ = {v′i}. The j-th column of [T ]B

′

B′ is the image T (v′j) in the coordinate system B′,
namely

[T (v′j)]B′ .

Using the discussion above about change of basis matrices,

[T (vj)]B′ = Q[T (vj)]B.

Similarly,

[vj]B = Q−1[vj]B′ = Q−1ej.

Thus,

[T (vj)]B′ = Q[T (vj)]B = (QABQ
−1)ej,

where AB is the matrix associated to T in B-coordinates. That is, the j-th column of
the matrix TB′ associated to T in B′-coordinates is [T (v′j)]B′ , which the last chain of

equalities also shows is equal to the j-th column of QABQ
−1. Thus,

AB′ = QABQ
−1,

where AB′ it the matrix for T in B′-coordinates. �

Example. Consider the linear transformation T : R2 →′ R2 corresponding to the matrix

A =

(
5 −3
2 −2

)
.
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That is, T (v) = Av. Now consider the basis B = {v1, v2} = {(3, 1), (1, 2)} of R2. The
change of coordinate matrix Q from the standard basis E = {e1, e2} is the inverse of the
matrix whose columns are v1, v2, as we have seen above. That is,

Q =

(
3 1
1 2

)−1
=

(
2
5
−1

5
−1

5
3
5

)
.

Thus, the matrix representation in the coordinate system B is

QAQ−1 =

(
2
5
−1

5
−1

5
3
5

)(
5 −3
2 −2

)(
3 1
1 2

)
=

(
4 0
0 −1

)
.

This means that [T (v1)]B = (4, 0) and [T (v2)]B = (0,−1), or

Av1 = 4v1, Av2 = −v2,
which is easy to check explicitly.

Finally, we remark that the above change of basis can be done for any linear trans-
formations between (possibly different) vector spaces. The proof is similar, so we omit
it, but for future reference we record it in the following result.

Theorem. If T : V → W is a linear transformation and A,A′ are ordered bases of V ,
B,B′ ordered bases of W , then we can change coordinates from A,B to A′, B′ according
to the formula:

[T ]B
′

A′ = [IW ]B
′

B [T ]BA[IV ]AA′ .
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