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In addition to vector spaces, the other main structures of linear algebra are certain
functions mapping between different vector spaces. We don’t care about generic func-
tions, but only ones which play nicely with the basic structure of vector spaces. In
general, throughout your mathematical career you will find that many subjects can be
studied in terms of 1). sets with “extra structure” together with 2). maps between
these sets respecting this structure. Although it is tempting at the beginning to simply
focus on the “objects” in 1) (which could be vector spaces, groups, fields, etc.), you
will quickly find that in fact maps between them are just as fundamental as the objects
themselves. As a rough idea for why this might be true, if you have an object which you
don’t know much about, it is often fruitful to find a function which “notices” some of
the basic features of that object and sends you to a much simpler object. For example,
you may consider a function mapping you to sets of matrices, which as we have seen
have many nice properties.

This brief aside having been said, we make the following definition.

Definition. If V and W are vector spaces over a field F , then a function T : V → W
(that is, a procedure taking a vector v ∈ V and spitting out a vector w ∈ W ) is called a
linear transformation if for all x, y ∈ V , c ∈ F , we have the usual linearity properties

T (x+ y) = T (x) + T (y),

T (cx) = cT (x).

For brevity, we will often just call such a function linear. I will also use words like
map, transformation, and function, interchangably.

Example. For any linear transformation T , we have T (0) = 0. Indeed, T (0) = T (0·0) =
0 · T (0) = 0.

Example. The most important property of derivatives which you frequently used in your
calculus class is that the derivative operator D is linear. For example, we have the linear
function T : P≤n → P≤n−1 (where P≤n is the space of real-valued polynomials of degree
at most n) defined by T (f) = f ′.
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Example. Consider the vector space C(R) of continuous functions from R to R. Then
for any real numbers a < b, we have a linear map T : C(R)→ R which sends f to

T (f) =

∫ b

a

f(x)dx.

The usual linearity properties of integrals show that this is indeed a linear map.

Example. For any pair of vector spaces V,W , there are two obvious, but trivial linear
transformations to consider. Firstly, we have the identity transformation IV : V → V
defined by

IV (v) = v

for all v ∈ V . We also have the zero transformation I0 : V → W defined by

I0(v) = 0

for all v ∈ V . Of course, this is a rather boring function, but if W is zero-dimensional,
this is the only possibility, so we do have to consider it sometimes. It is not a very nice
function though, as it completely forgets everything about the input vectors; this is like
crumpling a piece of paper up into just one point, a very messy operation which can’t be
undone.

Example. The most important example of a linear map is one which is associated to
any m× n matrix with real entries. Namely, given such a matrix A, we have a function
TA : Rn → Rm which sends

TA(v) = Av.

That is, this map is just left-multiplication by A. The basic rules of matrix arithmetic
directly show that this is indeed a linear transformation. As we saw in the last lecture,
if you have a finite dimensional vector space, via coordinate vectors one may think of
the vector space as a real vector space Rn once a basis for the original vector space is
chosen. If we have any linear map, then after choosing bases for both V and W , every
example is an instance of such a simple matrix multiplication transformation.

Example. A geometric example of the construction in the last example is the linear
transformation given by rotation of vectors in R2 by an angle ϑ. Namely, for 0 ≤ ϑ < 2π,
we define Tϑ = TA where

A =

(
cosϑ − sinϑ
sinϑ cosϑ

)
.

Explicitly, Tϑ(x, y) = (x cosϑ − y sinϑ, x sinϑ + y cosϑ), and geometrically, this corre-
sponds to rotating the vector (x, y) by an angle ϑ (counter-clockwise of course). For
instance, multiplying a vector by (

0 −1
1 0

)
rotates it by 90 degrees.
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Example. The linear operator (the use of the word operator signifies that it maps from
a space V to V itself) T : R2 → R2 with

T (x, y) = (x,−y)

reflects vectors about the x-axis.

Example. The linear operator T : R2 → R2 with

T (x, y) = (x, 0)

projects vectors onto the x-axis. That is, given a vector (x, y), the image under this map
is found by dropping a perpendicular line down to the x-axis and finding the intersection
point. Thus, although this operator is a map T : R2 → R2, it is also a linear map
T : R2 → W where W ⊂ R2 is the x-axis, a subspace of R2. This kind of behavior
in some ways is undesirable. For example, note that infinitely many points get sent to
the same points on the x-axis, so this projection operation forgets some of the original
information about the vector.

Given any linear transformation, there are two very important associated subspaces.
As you can guess from the language we have chosen, these have something to do with
the vector spaces arising from matrices which we have seen before.

Definition. The kernel (or null space) of T : V → W , denoted ker(T ), is the set of all
vectors v ∈ V with T (v) = 0. The image (or range), denoted Im(T ), is the set of all
images of V under T , that is,

Im(T ) = {w ∈ W : w = T (v) for some v ∈ V }.

The nullity, denoted null(T), is the dimension of ker(T ), and the rank, denoted rk(T )
is the dimension of Im(T ).

It is easy to show that ker(T ) is a subspace of V , and that Im(T ) is a subspace of
W . Indeed, the proof for the kernel is almost identical to the proof we gave for matrix
kernels, and to see that the image is a subspace of W , note that our example above stated
that T (0) = 0, so that 0 ∈ Im(T ), and closure under addition and scalar multiplication
are direct from the linearity properties of T .

Example. If A is a matrix, then the kernel of A is clearly the same as the kernel of TA.
Moreover, the image of TA is the same as the column space of A. Indeed, a vector w is
a linear combination of the columns of A if and only if Ax = w has a solution, which is
the same as saying that TA(x) = w for some x, or w is in the image of TA.

Example. For any vector spaces V,W , we have

ker(IV ) = {0}, Im(IV ) = V,

ker(T0) = V, Im(T0) = {0}.
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Generalizing the example above, once we pick a basis for V , we can easily find a
spanning set for Im(T ).

Theorem. If {v1, . . . , vn} is a basis for V and T : V → W is linear, then

Im(T ) = span{T (v1), . . . T (vn)}.

Proof. It is obvious that T (vj) ∈ Im(T ) for all j. We have already shown above that
Im(T ) is a subspace, and it hence

span{T (v1), . . . T (vn)} ⊆ Im(T ).

To show the reverse containment, suppose that w ∈ Im(T ). By assumption, we can find
a v ∈ V for which T (v) = w. In the given basis for V , suppose that the coordinate
vector of v is c, that is,

v = c1v1 + . . .+ cnvn.

Using the linearity of T applied to both sides of this equation, we find

w = T (v) = c1T (v1) + . . .+ cn(vn),

and hence
Im(T ) ⊆ span{T (v1), . . . T (vn)}.

As we have shown both containments, we have shown that

Im(T ) = span{T (v1), . . . T (vn)},
as desired. �

Example. Consider the projection operator T : R2 → R2 with

T (x, y) = (x, 0),

described above. Clearly, the kernel is the y-axis, and the image is the x-axis.

Example. We will later see that every linear transformation between finite-dimensional
vector spaces can be represented by matrix multiplication with a fixed matrix. Using the
rank-nullity theorem that we showed before using elementary row reduction, the following
fundamental result for linear transformations falls out.

Theorem (Rank-Nullity Theorem). If T : V → W is linear and V is finite-dimensional,
then

null(T ) + rk(T ) = dim(V ).

Example. Continuing the example above of the linear operator T : P≤n → P≤n−1 given
by

T (f) = f ′,

the kernel kernel consists of those polynomials with derivative zero, namely the constant
polynomials. Thus, the kernel is the subspace of polynomials of degree 0. The image
is all of P≤n−1. For example, we can take any polynomial in the latter and choose any
antiderivative of it, which will then be a polynomial with degree one larger.
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Example. Let’s reconsider the example T : C(R)→ R sending f to

T (f) =

∫ b

a

f(x)dx.

Clearly, the image is all of R, as for any constant c,
∫ b

a
cdx = (b − a)c, so any α ∈ R

is the image T (f) where f is the constant function α/(b − a). The kernel is also quite
large; it consists of all those functions whose averages on the interval [a, b] are zero.


