LECTURES 16: DIMENSIONS AND COORDINATES

MA1111: LINEAR ALGEBRA I, MICHAELMAS 2016

1. DIMENSION

There is one more term related to bases which we require, and which we have already used in the context of \mathbb{R}^n . This requires the following result.

Theorem. If a vector space V has a basis with n elements, then every basis of V has exactly n elements.

Proof. Suppose that $\{v_1, \ldots, v_m\}$ and $\{w_1, \ldots, w_n\}$ are bases of V with m > n. Every element of the first basis can, in particular, be written as a linear combination of elements of the second basis, say

$$v_i = \sum_{j=1}^n c_{ij} w_j.$$

The corresponding $m \times n$ matrix C with entries $C_{ij} = c_{ij}$ cannot have linearly independent rows, since the number of pivotal columns is at most n, less than m by assumption (in particular, its transpose cannot have a pivot in each column as it has more columns than rows). Hence, writing r_i for the *i*-th row of C, we have a non-trivial linear combination

$$\alpha_1 r_1 + \ldots + \alpha_m r_m = 0.$$

Taking the j-th component of each side yields

$$\alpha_1 c_{1j} + \ldots + \alpha_m c_{mj} = 0.$$

Hence,

$$\alpha_1 v_1 + \ldots + \alpha_m v_m = \sum_{i=1}^m \alpha_i \sum_{j=1}^n c_{ij} w_j = \sum_{j=1}^n \left(\sum_{i=1}^m \alpha_i c_{ij} \right) w_i = \sum_{j=1}^n 0 \cdot w_i = 0.$$

Thus, the v_i are linearly dependent, which is a contradiction.

Thanks to this theorem, the following definition is sensible.

Definition. If V has a basis with $n < \infty$ elements, we say that V has **dimension** n. We also say in this case that V is **finite-dimensional**. If V has a linearly independent set with infinitely many elements, then we say V is **infinite-dimensional**.

Date: November 15, 2016.

Example. As expected, the dimension of \mathbb{R}^n , as well as of F^n for any field, is n. More generally, the theory of coordinates (discussed further below) implies that every finitedimensional vector space over F is in some sense "the same" as F^n , where n is the dimension of the space.

Example. We saw that \emptyset is a basis for $\{0\}$. Hence $\{0\}$ is a zero-dimensional vector space (which fits with our intuition that the dimension of a point should be zero).

Example. The typical example of infinite dimensional spaces are spaces consisting of real functions. For example, the spaces of polynomials, continuous functions, and smooth functions over \mathbb{R} are all infinite-dimensional spaces.

Example. We define the **nullity** of a matrix, null(A), to be the dimension of its kernel (a.k.a. null space). We define its **rank** to be the dimension of its column space (or row space; we showed the very nice result that the dimensions one gets in either case is the same last time). Since we saw that the **rank is the number of pivots of the matrix**, and the kernel has a basis with one element corresponding to each free column (i.e., each one without a pivot), we have already shown the famous **rank-nullity theorem**, which states that for any matrix A of size $m \times n$,

$$\operatorname{rk}(A) + \operatorname{null}(A) = n.$$

We will return to this fundamental theorem later, but it is nice to remark at this point that such a nice result was proven only by "simple" row reduction.

Example. Let's find (or rather describe/count) all the subspaces of \mathbb{F}_2^3 . There is only one subspace of dimension 3, the whole space \mathbb{F}_2^3 . There is only one subspace of dimension 0, namely $\{0\}$. Any subspace of dimension one is generated by a single non-zero element. By the property 1 + 1 = 0 in \mathbb{F}_2 , any vector v satisfies 2v = 0, so $\{(0,0,0),v\}$ for any non-zero vector will give a subspace of dimension 1. There are 7 such vector spaces. Finally, the subspaces of dimension 2 will be those spanned by two non-zero vectors. We can generate any of these by writing down two different vectors $v_1, v_2 \neq 0$. The corresponding subspace will be $\{0, v_1, v_2, v_1 + v_2\}$. There are 21 different ways to choose two different non-zero vectors from our 7 available choices, and each vector space is represented 3 times in a different guise, and so 7 vector spaces are generated in this manner. Overall, there are thus 16 subspaces of \mathbb{F}_2^3 . One can do a similar argument in any number of dimensions. For example, there are 67 subspaces of \mathbb{F}_2^4 and 374 of \mathbb{F}_2^5 . For large n, it turns out that the total number of subspaces is very nearly approximated by about $7.3 \cdot 2^{\frac{n^2}{4}}$.

Example. Using the standard basis we wrote down in a previous lecture (consisting of all possible matrices with a 1 in one entry and 0's everywhere else), the matrix space $M_{m \times n}(F)$ has dimension mn.

Example. The space of polynomials of degree $\leq n$ has basis $\{1, x, \ldots, x^n\}$, and hence dimension n + 1.

Example. Recall the field $\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}$. This is a \mathbb{Q} -vector space, and has as a basis $\{1, \sqrt{2}\}$ (note that $\sqrt{2}$ isn't rational!), so in fact this field is a two-dimensional vector space over the field of rationals \mathbb{Q} .

2. Coordinates

We proved earlier that if v_1, v_2, \ldots, v_n is a basis of a vector space V, then for any $v \in V$ there are **unique** scalars c_1, \ldots, c_n for which

$$c_1v_1 + \ldots + c_nv_n = v.$$

We call these numbers c_1, \ldots, c_n the **coordinates** of v with respect to this basis, and we may occasionally refer to the vector (c_1, \ldots, c_n) as the **coordinate vector** of v. As hinted at above, the utility of this result/definition is that working with vector in general vector spaces is the same as working with coordinate vectors, which are ordinary vectors in the "easier" space F^n . This, however, requires one to make a choice of a basis, and in different applications, it may not always be obvious which basis is the best.

Example. The coordinate vector of any vector v in \mathbb{R}^n with respect to the standard basis e_1, \ldots, e_n , is, basically by definition, the vector v itself.

Example. The coordinate vector of a matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_{2 \times 2}(\mathbb{R})$ with respect to the standard basis of $M_{2 \times 2}(\mathbb{R})$ given by

$$\left\{ \left(\begin{smallmatrix} 1 & 0 \\ 0 & 0 \end{smallmatrix}\right), \left(\begin{smallmatrix} 0 & 1 \\ 0 & 0 \end{smallmatrix}\right), \left(\begin{smallmatrix} 0 & 0 \\ 1 & 0 \end{smallmatrix}\right), \left(\begin{smallmatrix} 0 & 0 \\ 0 & 1 \end{smallmatrix}\right) \right\}$$

is (a, b, c, d). Thus, we may "identify" the space $M_{2\times 2}(\mathbb{R})$ with \mathbb{R}^4 .

Example. Instead of the standard unit basis $\{e_1, e_2\}$ of \mathbb{R}^2 , we may take an alternate basis $\{(2,3), (1,5)\}$. Then suppose we want to find the coordinate vector of (4,7) with respect to this non-standard basis. We want to solve for $c_1, c_2 \in \mathbb{R}$ such that $c_1(2,3) + c_2(1,5) = (4,7)$, or equivalently

$$\begin{cases} 2c_1 + c_2 = 4. \\ 3c_1 + 5c_2 = 7. \end{cases}$$

Solving this system gives $c_1 = 13/7$, $c_2 = 2/7$, which are the coordinates of (4,7) (as is easily checked by plugging back in).

We now describe the general procedure for finding coordinate vectors in \mathbb{R}^n with respect to arbitrary bases v_1, \ldots, v_n . Suppose that v is a general vector in \mathbb{R}^n and we wish to find its coordinates. Then we are trying to solve

$$c_1v_1+\ldots+c_nv_n=v_n$$

which is (as we have seen several times in previous lectures) a system of linear equations corresponding to finding a vector c with

$$Ac = v,$$

where A is the matrix with columns v_1, \ldots, v_n . Of course, this is solved by finding A^{-1} and computing $c = A^{-1}v$ (or by using any methods for solving systems of linear equations which we gave before). Note that the inverse will exist, since a set of n vectors in \mathbb{R}^n is a basis if and only if the determinant of A is non-zero, or equivalently, A is invertible.

Example. If we consider the basis $\{(1,2), (2,3)\}$ of \mathbb{R}^2 , then the coordinates of (5,4) can be found by first taking the matrix

$$A = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}$$

and computing its inverse (we can use the general formula

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{\det(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix})$$

to be

$$A^{-1} = \begin{pmatrix} -3 & 2\\ 2 & -1 \end{pmatrix}.$$

Thus the coordinate vector of (5, 4) is

$$\begin{pmatrix} -3 & 2\\ 2 & -1 \end{pmatrix} \begin{pmatrix} 5\\ 4 \end{pmatrix} = \begin{pmatrix} -7\\ 6 \end{pmatrix}.$$

Example. A basis for the space of polynomials P(x) of degree at most 3 with P(3) = 0 is given by $\{x - 3, x^2 - 9, x^3 - 27\}$. This is thus a three-dimensional subspace of the four-dimensional space of polynomials of degree at most 3. It is easy to check that $f(x) = -x^3 + 3x^2 + 2x - 6$ lies in this subspace. To express it in terms of this basis, we have to solve

$$a(x-3) + b(x^2 - 9) + c(x^3 - 27) = ax + bx^2 + cx^3 + (-3a - 9b - 27c) = -x^3 + 3x^2 + 2x - 6.$$

Setting powers of x on either side equal to one another, we directly find that a = 2, b = 3, c = -1 (as well as that the constant terms are consistent with these choices), so the coordinate vector of f with respect to the basis above is (2, 3, -1).