
LECTURES 14/15: LINEAR INDEPENDENCE AND BASES

MA1111: LINEAR ALGEBRA I, MICHAELMAS 2016

1. Linear Independence

We have seen in examples of span sets of vectors that sometimes adding additional
vectors doesn’t increase the span of a set of vectors. For example, if v is a vector in R3,
then span(v) = span(v, 2v). We want to develop language to exclude such cases and
throw away redundant information in the description of subspaces built out of span sets.
To this end, we set the following terminology.

Definition. We say that a non-empty set S of vectors in V is linearly dependent if
there are vectors v1, . . . , vn ∈ V and scalars c1, . . . , cn ∈ F not all equal to zero for
which

c1v1 + . . . + cnvn = 0.

If no such non-trivial linear dependency exists, we say that the set S is linearly
independent.

Example. A set with only one non-zero vector is linearly independent, as if cv = 0, then
we saw before that c = 0 or v = 0, and v 6= 0 by assumption. Thus, any equation must
have c = 0, and then it violates the condition of not all scalars in a linear dependency
being 0.

Example. In R3, for any vector v the set S = {e1, e2, e3, v} is linearly dependent, as we
can write any such vector as v = c1e1 + c2e2 + c3e3 for real numbers c1, c2, c3, and thus

−c1e1 − c2e2 − c3e3 + v = 0,

and the coefficient in front of v is 1 6= 0.

Example. Any set which contains the zero vector is linearly dependent. For example,
we have the linear dependency 1 · 0 = 0.

Example. By definition the empty set ∅ is always linearly independent as there are no
possible linear combinations in the definition above to check!

As we have seen, properties about linear combinations of vectors can be expressed in
terms of solution sets to systems of linear equations. In the case of linear independence,
suppose that we wish to determine whether S = {v1, . . . , vn} is linearly independent,
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where vi =

a1i
...

ami

 ∈ Rm. Then we are asking whether there are scalars c1, . . . , cn, not

all zero, for which

c1v1 + . . . + cnvn = c1

a11
...

am1

+ . . . + cn

a1n
...

amn

 = 0,

or
Ac = 0

with A defined by Aij = aij (i.e., A is the matrix whose columns are v1, . . . , vn) and

c =

c1
...
cn

, and we only require that c 6= 0. That is, a finite set of vectors in Rn

is linearly independent if and only if the matrix A with those vectors as its columns
has ker(A) = {0}. As performing elementary row operations on an augmented matrix
preserves the solution sets, and as any elementary row operations keep the vector 0
unchanged, this is equivalent to there being a non-trivial kernel of the RREF of A,
which happens exactly when there is a column without a pivot in the RREF of A. That
is, we have shown the following.

Theorem. The following are equivalent for a set of vectors v1, . . . , vn ∈ Rm, where
A =

(
v1 . . . vn

)
is the matrix with columns v1, . . . , vn.

(1) The vectors v1, . . . , vn are linearly independent.
(2) The kernel of A is the trivial subspace {0}.
(3) The kernel of the RREF of A is the trivial subspace {0}.
(4) The RREF of A has a pivot in every column.

In particular, if n = m, that is, if the matrix A is square, this is equivalent to detA 6= 0.

Example. In R3, the set of vectors v1 = (1, 4, 7), v2 = (2, 5, 8), v3 = (3, 6, 9) is linearly
dependent as

det

1 2 3
4 5 6
7 8 9

 = 0.

However, the set of vectors v1 = (1, 4, 7), v2 = (2, 5, 0), v3 = (3, 6, 9) is linearly indepen-
dent as

det

1 2 3
4 5 6
7 0 9

 = −48 6= 0.

Note that this doesn’t say exactly the same things as the example in the last lecture when
we discussed the spans of these vectors. However, we will see that spans of n vectors in
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Rn are all of Rn if and only if they are linearly independent. This is essentially a special
case of the Fundamental Theorem of Linear Algebrta.

Example. In R4, the vectors v1 = (1, 4, 7, 1), v2 = (2, 5, 8, 2), v3 = (3, 6, 9, 3) are linearly
dependent as the RREF of

A =


1 2 3
4 5 6
7 8 9
1 2 3


is 

1 0 −1
0 1 2
0 0 0
0 0 0

 ,

which has 2 pivots and 3 columns, and hence there are infinitely many solutions to
Ax = 0. However, the vectors v1 = (1, 4, 7, 1), v2 = (2, 5, 8, 2), v3 = (3, 6, 9, 4) are
linearly independent as the RREF of

A =


1 2 3
4 5 6
7 8 9
1 2 4


is 

1 0 0
0 1 0
0 0 1
0 0 0

 ,

which has a pivot in each column, and hence trivial kernel.

Example. If we have a set of n vectors v1 . . . , vn in Rm, if n > m, then they must be
linearly dependent as the corresponding matrix A has n columns, but only m rows. In
order to be linearly independent, there must be a pivot in each column, that is there must
be n pivots. However, there can only be one pivot in each row, so there are at most
m < n pivots.

Example. By the last example, it is automatic that the set of vectors v1 = (1, 4, 7),
v2 = (2, 5, 8), v3 = (3, 6, 9), v4 = (−1, 4,−5) is linearly dependent, and we don’t have to
do any work with row reduction to determine this.

2. Bases of vector spaces

We now combine the notions of span and linear independence to describe set of vectors
which build up vector spaces without “redundant information.”
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Definition. A basis for a vector space V is a set S ⊂ V which is linearly independent
and which spans V .

Example. We defined the span of the empty set ∅ to be {0}, and clearly there can be
no linear dependence relations in a set with no elements, and so ∅ is a basis for {0}.

Example. In Rn, we have regularly referred to the vectors e1, . . . , en as standard unit
basis vectors. They do indeed form a basis of Rn, as we have repeatedly seen that they
span Rn, and they are linearly independent as the matrix whose columns are the standard
unit basis vectors is the identity matrix In, which of course has non-zero determinant.
The same construction, setting ei to be the vector with a 1 in the i-th position and zero
elsewhere, provides a basis of F n for any field F .

Example. The set {1, x, x2, . . .} of all non-negative integral powers of x is a basis of
P(F ).

Example. The set {M ij : 1 ≤ i ≤ m, 1 ≤ j ≤ n} where M ij is the m× n matrix with
entry 1 in the (i, j)-th entry and 0 elsewhere is a basis of the space of matrices Mm×n(F ).

The idea of a basis providing the smallest possible set to describe all elements of
a vector space (i.e., without redundant information) is made precise by the following
result.

Theorem. A set S ⊂ V is a basis for V if and only if every element of V can be
expressed uniquely as a linear combination of elements of S.

Proof. Suppose that S is a basis for V . Then by definition span(S) = V , so every element
of V can be written as a linear combination of elements of S. To show the uniqueness
of this expression, suppose that v ∈ V has two representations as linear combinations of
elements v1, . . . , vn ∈ S:

v = c1v1 + . . . + cnvn = c′1v1 + . . . + c′nvn.

Taking the difference of these two representations, we find that

(c1 − c′1)v1 + . . . + (cn − c′n)vn = 0,

and since S is linearly independent we have c1 − c′1 = 0, . . . , cn − c′n = 0. Hence,
c1 = c′1, . . . , cn = c′n, and so the two representations of v were the same all along.

Conversely, if every element of V is a unique linear combination of elements of S, then
clearly S spans V . To show that S is linearly independent, suppose that

c1v1 + . . . + cnvn = 0

with v1 . . . , vn ∈ S and with not all c1, . . . , cn equal to zero. Then we can find many
non-unique representations of elements of V as linear combinations of elements from S.
For example, v1 = 1 · v1 = (c1 + 1)v1 + . . . + cnvn gives two different representations of
v1.

�
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We will later return to this fact, and the coefficients in these unique representations
will be called the coordinates of a vector with respect to a basis. In fact, this idea
will allow us to show that all vector spaces spanned by a finite number of vectors (this
is most of them that we have seen, other than vector spaces built out of functions like
P(R) and C∞) are really the same thing as the “simple” vector space F n for some n.

Our two most important examples of computing bases are for our two most important
subspaces: kernels (or null spaces) and column spaces (or spans of vectors in Rn). We
now discuss each case.

Example. The kernel of a matrix can be found using row reduction, as we have seen.
In particular, we have seen above that the kernel of a matrix A is the same as the kernel
of the RREF of A, and we can use our Gaussian elimination algorithm to easily find a
basis for the kernel of any matrix. For example, we saw above that

A =


1 2 3
4 5 6
7 8 9
1 2 3


has a non-trivial kernel. This is the same as the kernel of the RREF of A, which we
have seen is

R =


1 0 −1
0 1 2
0 0 0
0 0 0

 .

The solutions to the equation R = 0 are obtained by setting the free variable x3 = t for
t ∈ R, and solving to get the one-parameter infinite set of solutions

x1 = t, x2 = −2t, x3 = t,

which is a line in R3 with basis (1,−2, 1).
As another example, consider the matrix

A =

1 1 2 3 4
1 1 1 1 1
1 2 1 2 1

 .

This matrix has RREF

R =

1 0 0 −2 −2
0 1 0 1 0
0 0 1 2 3

 .

The solution set to Rx = 0 is found by setting x4 = t4, x5 = t5 for t4, t5 ∈ R, and solving
for the pivotal variables:

x1 = 2t4 + 2t5, x2 = −t4, x3 = −2t4 − 3t5, x4 = t4, x5 = t5.
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That is, the the vectors in the kernel are those vectors x =


x1

x2

x3

x4

x5

 of the form

x = t4


2
−1
−2
1
0

+ t5


2
0
−3
0
1

 ,

i.e., the span of 


2
−1
−2
1
0

 ,


2
0
−3
0
1




is ker(A). It is also easy to check that these two vectors are linearly independent, so
that they are indeed a basis for ker(A). In general, the basis for the kernel of a matrix
will always have the same number of elements in it as the number of free variables in its
RREF, i.e., the vectors that this method yields will always form a linearly independent
set.

The second main example of a vector space we would like to find bases for is a subspace
spanned by a set of vectors in Rn. We will give two methods for this. We can solve this
problem by computing the row space or the column space of a matrix A; of course, we
can switch between the two perspectives using transposes.

We begin with the case of row space, the span of the rows a a matrix.

Theorem. The row space of A is the same as the row space of the RREF of A.

Proof. It suffices to show that elementary row operations don’t change row space. Indeed,
suppose that the rows of a matrix A are v1, . . . , vn. If we multiply row j by a non-zero
constant c, this then the row space is of the form

span(v1, . . . , cvj, . . . , vn) = {c1v1 + . . . + (cjc)vj + . . . + cnvn : c1, . . . , cn ∈ F},

which is the same as the original span since as cj ranges over all elements of F so does
cjc, as c 6= 0 (think of the case of real numbers; this is true since in a field we can
always divide by non-zero elements). Clearly, if we swap two rows, this doesn’t change
the span, as addition in vector spaces is commutative. Finally, if we add a multiple of
one row to another it doesn’t change the span. For example, by swapping rows suppose
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that we add c times the second row to the first, with c 6= 0. Then the row space of the
resulting matrix is

span(v1, v2 + cv1, . . . , vn) = {c1v1 + c2(v2 + cv1) + . . . + cnvn : c1, . . . , cn ∈ F}.

Now c1v1 + c2(v2 + cv1) + . . . + cnvn = (c1 + c2c)v1 + c2v2 + . . . + cnvn, and clearly as
c1, c2 range over all choices of n elements of F , so does c1 + c2c. �

�

In general, the column space of a matrix isn’t the same as the column space of its
RREF. But, you can always find the column space by using elementary column opera-
tions or by taking the transpose of the matrix and then using row reduction to find the
row space.

Moreover, it isn’t hard to show the following.

Theorem. The non-zero rows in a reduced row echelon form matrix are linearly inde-
pendent. Thus, the non-zero rows of the RREF of a matrix A form a basis of the row
space of A.

Another method is to use pivots in row recution to find which column vectors in matrix
are linearly independent. To see this, suppose that a number of columns vi1 , . . . , vin of a
matrix have a non-trivial linear dependency c1vi1 + . . .+cnvin = 0. Note that vij = Aeij ,
where e1, . . . are the usual standard basis vectors. Then if E1, . . . , Ek are elementary
matrices with R = E1 · · ·EkA where R is the RREF of A we clearly have

0 = (E1, · · · , Ek)(c1vi1 + . . . + cnvin) = (E1, · · · , Ek)(c1Aei1 + . . . + cnAein)

= c1(E1, · · · , Ek)Aei1 + . . . + cn(E1, · · · , Ek)Aein = c1Rei1 + . . . + cnRein ,

so that the same linear relation holds between the corresponding columns of R. The
converse is also clearly true, as elementary matrices are always invertible. Thus, since
the column space of a matrix in RREF is just the span of its pivotal columns, we have
shown the following result.

Theorem. The column space of a matrix A has as a basis the set of column vectors
corresponding to columns with a pivot in the RREF of A.

Example. Let’s compute bases for the kernel, column space, and row space of a big
matrix. Take

A =


3 4 0 7
1 −5 2 −2
−1 4 0 3
1 −1 2 2

 .
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The first step is to compute the RREF of A, which is

R =


1 0 0 1
0 1 0 1
0 0 1 1
0 0 0 0

 .

There are 3 pivotal variables and one free variable, so the kernel will have a basis with
1 element and a column space with a basis of 3 elements. The kernel is found by solving
Rx = 0, which has solution set

x1 = −t, x2 = −t, x3 = −t, x4 = t,

which is clearly ker(A) = span(−1,−1,−1, 1), with basis {(−1,−1,−1, 1)}.
We have already basically found the column space as well, as the RREF above has piv-

ots in the first three columns and so col(A) has as a basis {(3, 1,−1, 1), (4,−5, 4,−1), (0, 2, 0, 2)}.
We can find another basis for the column space by noting that it is the same as the

row space of AT , and we compute that the RREF of AT is
1 0 0 1

4
0 1 0 1
0 0 1 3

4
0 0 0 0

 .

Thus, the row space of this matrix, and hence the column space of our original matrix
A also has basis {(1, 0, 0, 1/4), (0, 1, 0, 1), (0, 0, 1, 3/4)}.

Finally, we can find the row space of our original matrix A by noting that it has as a
basis the non-zero rows of R above, namely {(1, 0, 0, 1), (0, 1, 0, 1), (0, 0, 1, 1)}.

Summarizing our results on kernels, column spaces, and row spaces, we have the
following.

Theorem. For an m × n matrix A, the number of free variables in the RREF of A is
the number of elements in a basis for the kernel ker(A). Moreover, the columns of A are
linearly independent if and only if the kernel is the trivial subspace {0}, which is true if
and only if the RREF of A has a pivot in each column.

Furthermore, the set of non-zero rows in the RREF of A forms a basis of the row
space, and the set of columns corresponding to pivotal variables of the RREF of A forms
a basis of the column space of A. In particular, the row space and column space both
have a basis which has as its number of elements the number of pivots in the RREF of
A. Furthermore, the columns of A span all of Rm if and only if there is a pivot in each
row.

Finally, for a square n× n matrix A, the following are equivalent.

(1) The columns of A span Rn

(2) The columns of A are linearly independent.
(3) The columns of A form a basis of Rn.
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(4) The rows of A form a basis of Rn.
(5) The matrix A is invertible.
(6) det(A) 6= 0.
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