
LECTURE 13: DIRECT SUMS AND SPANS OF VECTOR SPACES
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1. Direct sums

Another way to build new vector spaces from old ones is to use direct sums. There
are two ways to think about this, which are slightly different, but morally the same.
First, we define the (external) direct sums of any two vectors spaces V and W over the
same field F as the vector space V ⊕W with its set of vectors defined by

V ⊕W = V ×W = {(v, w) : v ∈ V, w ∈ W}
(the × here is the Cartesian product of sets, if you have seen it, which is defined as a set
of ordered pairs as in the second equality on the last line) and with the natural vector
operations

(v1, w1) + (v2, w2) = (v1 + v2, w1 + w2),

c(v, w) = (cv, cw).

In the last two lines, vector operations take place within V in the first component and
in W in the second component.

Example. The definition we gave for F 2 is just a special case of this definition; that is,
F 2 = F ⊕ F . More generally, F n is just the n-fold direct product

F ⊕ F ⊕ . . .⊕ F.

In many very important situations, we start with a vector space V and can identify
subspaces “internally” from which the whole space V can be built up using the construc-
tion of direct products. While this is slightly untrue, it basically is with respect to any
vector space structure we might care about (in more fancy language which we haven’t
seen yet, the following construction will give an “isomorphic” structure as the above
does; for now, think of this as something like if I take all elements of a vector space and
paint them green, they may look a little different, but the linear algebra doesn’t even
notice).

To define this, we first define, for any subsets X, Y ⊆ V their sum

X + Y = {x + y : x ∈ X, y ∈ Y }.
Then if W1,W2 are subspaces of V with W1 ∩ W2 = {0} (the only vector in both of
them is 0) and W1 + W2 = V , then we say that V is the (internal) direct sum of W1
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and W2, and we write V = W1 ⊕W2. Again, although this looks slightly different from
the definition of direct sums above, we will use the phrase “direct sum” to refer to both;
as usual, you must use context to determine which one makes sense! Another way of
thinking about this definition, which we may not use much but is nice to think about,
is that a vector space V is a direct sum of W1 and W2 if and only if every element of V
can be written uniquely as a sum w1 + w2 with w1 ∈ W1 and w2 ∈ W2.

Example. Consider the plane P = {(x, y, z) ∈ R3 : z = 0} in R3 with L = {(x, y, z) ∈
R3 : x = y = 0}. Then these are both subspaces of R3 as we saw above, and their
intersection is trivial (as if z = 0 and x = y = 0, then x = y = 0 so (x, y, z) = 0 ∈ R3)
and their sum is all of R3 (if (x, y, z) ∈ R3, write (x, y, z) = (x, y, 0) + (0, 0, z).), so that

R3 = L⊕ P.

Example. Previously, we showed that the set of even polynomials (those with f(−x) =
f(x)) form a subspace E(R) of the space of polynomials P(R). Similarly, the set of
odd polynomials O(R) with f(−x) = −f(x) is a subspace. Moreover, we claim that
P(R) = E(R)⊕O(R). To show this, note that if f is both even and odd, then f(−x) =
f(x) = −f(x), which means that f(x) = 0, and so E(R) ∩ O(R) = {0}. Moreover,
P(R) = E(R) +O(R), as for any polynomial f , we can write

f(x) =
f(x) + f(−x)

2
+

f(x)− f(−x)

2
,

which is a sum of an even polynomial and an odd one.

Example. Consider the plane P = {(x, y, z) ∈ R3 : x− y + 2z = 0} and its normal line
L = {t(1,−1, 2) : t ∈ R}. These are both subspaces of R3, as we have seen. We also
claim that R3 = L ⊕ P , as in the geometric example above. To check this, note that a
plane and its normal line clearly only intersect in one point, and in this case both pass
through the origin, so clearly L ∩ P = {0}. Checking that R3 = L + P is the same as
checking that for any (x, y, z) ∈ R3, there is a point on the line, say (a,−a, 2a), and a a
point on the plane, say of the form (b, b + 2c, c), for which

(x, y, z) = (a,−a, 2a) + (b, b + 2c, c) = (a + b,−a + b + 2c, 2a + c),

or x = a + b, y = −a + b + 2c, z = 2a + c. This is the same as solving the equation

Ax = d with d =

x
y
z

 and A =

 1 1 0
−1 1 2
2 0 1

. Since we want to show that this is always

solvable, for any choice (x, y, z), this is equivalent to A being invertible, or detA 6= 0.
Indeed, this example has determinant 6.

N.B. Another way to solve this problem would be to first pick any two non-parallel,
non-zero vectors on the plane, and then the second part is really just asking whether
the span of those two vectors together with any non-zero vector on the line spans R3;
see the examples in the next section on spans.
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2. Spans

Last time, we saw a number of examples of subspaces and a useful theorem to check
when an arbitrary subset of a vector space is a subspace. There is one particularly
useful way of building examples of subspaces, which we have seen before in the context
of systems of linear equations. The idea follows a common theme in mathematics; it
is always a good idea to break down a large, complicated set of objects to reduce to
the study of a smaller or simpler set of objects. For example, in our computations of
determinants, it was extremely useful to reduce the det function to a function on the
standard unit basis vectors e1, . . . , en using multilinearity. The notion we are after is
that of linear combination and span. Since we now have a more general notion of vectors,
we can recall this setup and generalize it by giving the following definition.

Definition. A vector v in a vector space V over a field F is a linear combination of
the vectors v1, . . . , vn ∈ V if there are scalars c1, . . . , cn ∈ F with

c1v1 + c2v2 + . . . + cnvn = v.

Given a set of vectors v1, . . . vn, their span is the set of linear combinations

span(v1, . . . vn) = {c1v1 + c2v2 + . . . + cnvn : c1, . . . cn ∈ F}.

More generally, given an arbitrary (possibly infinite) set of vectors S ⊂ V , their span
is the set of all finite linear combinations of elements of S:

span(S) = {c1v1 + c2v2 + . . . + cnvn : c1, . . . cn ∈ F, v1, . . . , vn ∈ S}.

We also say that a set of vectors S ⊆ spans or generates a vector space V if V =
span(S). In this situation, we also say that S is a complete set for V . Finally, we make
the convention that if ∅ is the empty set, then span(∅) = {0}.

For us, the reason these are useful is stated in the following result.

Theorem. For any subset S ⊆ V , the set span(S) is a subspace of V .

Proof. It is clear that the span of any set contains 0 (note our convention on empty sets).
To show that the span is a subspace, we therefore only have to show that it is closed
under addition and scalar multiplication. Indeed, if we take two elements of the span to
be (note that we assume that the two elements of the span are linear combinations of
the exact same set of vectors by possibly adding in some extra factors with 0 coefficients
in front)

(c1v1+c2v2+. . .+cnvn)+(c′1v1+c′2v2+. . .+c′nvn) = (c1+c′1)v1+(c2+c′2)v2+. . .+(cn+c′n)vn ∈ span(S).

Similarly,

c(c1v1 + c2v2 + . . . + cnvn) = cc1v1 + cc2v2 + . . . + ccnvn ∈ span(S).

�
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Thus, spans are indeed subspaces. The reason that we say a set S generates the span
of S is that it turns out that the span of S is the smallest subspace of V containing S.

Example. The set of standard basis vectors e1, . . . en spans Rn.

Example. The set {1, x, x2 . . . , xn, . . .} generates P(F ) for any field F .

Example. Given two vectors in R3, their span is either the set {0} (if both vectors are
0), a line passing through one of them and the origin (if both of them lie on this line),
or a plane (if they do not lie on a common line through the origin).

Example. The vectors (1, 2) and (3, 4) generate R2. Indeed, if

(
b1
b2

)
∈ R2, then we saw

that for a square matrix A, the system Ax = b is solvable if and only if b is in the span
of the columns of A, and this is only true for all vectors b if the matrix is invertible (we
argued this in the big proof in Section 2 of Lecture 7), so that this is equivalent to

det

(
1 3
2 4

)
= −2 6= 0,

which is true.

Example. Continuing the last example, a set of n vectors in Rn spans all of Rn if and
only if the determinant of the matrix with these vectors as its columns is non-zero. For
example,

det

1 2 3
4 5 6
7 0 9

 = −48 6= 0,

so the vectors (1, 4, 7), (2, 5, 0), and (3, 6, 9) span R3.
However,

det

1 2 3
4 5 6
7 8 9

 = 0,

so (1, 4, 7), (2, 5, 8), and (3, 6, 9) do not span R3.
Another way to see that this is true is to note that −(1, 4, 7) + 2(2, 5, 8) = (3, 6, 9), so

that (3, 6, 9) ∈ span((1, 4, 7), (2, 5, 8)). Thus, “adding in” (3, 6, 9) doesn’t make the span
any larger.

Example. The polynomial 2x3 − 2x2 + 12x− 6 is in the span of x3 − 2x2 − 5x− 3 and
3x3 − 5x2 − 4x − 9 in P(R). Indeed, this is the same as saying that there are a, b with
a(x3−2x2−5x−3) + b(3x3−5x2−4x−9) = (a+ 3b)x3 + (−2a−5b)x2 + (−5a−4b)x+



LECTURE 13: DIRECT SUMS AND SPANS OF VECTOR SPACES 5

(−3a− 9b) = 2x3 − 2x2 + 12x− 6, or
a + 3b = 2

−2a− 5b = −2

−5a− 4b = 12

−3a− 9b = −6

.

Using Gaussian elimination, we find that this is a consistent system of equations with
solution a = −4, b = 2.

Example. We determine whether (−2, 0, 3) is a linear combination of (1, 3, 0) and

(2, 4,−1). This is equivalent to the system Ax = b with A =

1 2
3 4
0 −1

 and b =

−2
0
3


being consistent. Row reducing shows that this is indeed the case, and moreover explicitly
finds the linear combination

4(1, 3, 0)− 3(2, 4,−1) = (−2, 0, 3).
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