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MA1111: LINEAR ALGEBRA I, MICHAELMAS 2016

(1) The space P≤2(R) of polynomials with real coefficients and degree at most 2 is
a vector space over R. Clearly, one basis of it is the set {1, x, x2}. Which of the
following sets are also bases for P≤2(R)?
(a) {−1− x+ 2x2, 2 + x− 2x2, 1− 2x+ 4x2}
(b) {1 + 2x+ 4x2, 3− 6x2, x+ 3x2}

Solution:
a). Suppose that α + βx + γx2 is a generic polynomial in P≤2(R). This

polynomial is in span(−1−x+ 2x2, 2 +x− 2x2, 1− 2x+ 4x2) if and only if there
are real numbers a, b, c for which

a(−1− x+ 2x2) + b(2 + x− 2x2) + c(1− 2x+ 4x2)

= (−a+ 2b+ c) + (−a+ b− 2c)x+ (2a− 2b− 4c)x2 = α + βx+ γx2,

or 
−a+ 2b+ c = α

−a+ b− 2c = β

2a− 2b− 4c = γ.

This system of equations corresponds to the matrix equation−1 2 1
−1 1 −2
2 −2 −4

ab
c

 =

αβ
γ

 .

Thus, the set of polynomials spans P≤2(R) if and only if this matrix has column
space R3, which happens if and only if the determinant of the 3 × 3 matrix of
polynomial coefficients is non-zero. Similarly, the set is linearly independent if
and only if the only linear combination of the polynomials which is 0 is the trivial
with all coefficients zero, which is equivalent to the kernel of the 3 × 3 matrix
being the trivial subspace {0}, which is also equivalent to the determinant being
non-zero.

After a short computation, one finds that−1 2 1
−1 1 −2
2 −2 −4

 = −8 6= 0,

and so the set of three polynomials is a basis for P≤2(R).
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b). Arguing exactly as in a), we form the matrix of polynomials coefficients
and take the determinant to find that

det

1 3 0
2 0 1
4 −6 3

 = 0,

and so the polynomials are not a basis. In fact, the third polynomial is 1/2 times
the first minus 1/6 times the second, and so they are linearly dependent. If you
like, you can work out that the first two polynomials are linearly independent,
and they span the subspace of polynomials of degree at most two of the form
α + βx+ γx2 with γ = −2α + 3β.

(2) Find a basis of the subspace of skew-symmetric matrices in M3×3(R), i.e., those
for which MT = −M , as well as a basis for the subspace of symmetric matrices
in M3×3(R), i.e., those for which MT = M .

For a general matrix space Mn×n(R), show that Mn×n(R) is the direct sum of
the subspaces skew-symmetric matrices with the subspace of symmetric matrices.
(Hint: The proof is similar to our proof that the space of polynomials is the direct
sum of the subspaces of even and odd polynomials.)

Solution:
A general skew symmetric matrix of size 3× 3 has the shape 0 a b

−a 0 c
−b −c 0

 ,

where a, b, c ∈ R. Clearly, the set of such matrices is spanned by the set 0 1 0
−1 0 0
0 0 0

 ,

 0 0 1
0 0 0
−1 0 0

 ,

0 0 0
0 0 1
0 −1 0

 .

Moreover, it is directly clear that these matrices are linearly independent. For
example, if a linear combination of them of the shape 0 a b

−a 0 c
−b −c 0


is the 0 matrix, then clearly a = b = c = 0.

The space of symmetric matrices is the set of matrices of the shapea b c
b d e
c e f

 ,

where a, b, c, d, e, f ∈ R, and clearly we can find a basis in a similar manner by
setting any of the variables equal to one and the others to be zero, giving the
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basis
1 0 0

0 0 0
0 0 0

 ,

0 1 0
1 0 0
0 0 0

 ,

0 0 1
0 0 0
1 0 0

 ,

0 0 0
0 1 0
0 0 0

 ,

0 0 0
0 0 1
0 1 0

 ,

0 0 0
0 0 0
0 0 1

 .

Following the hint, for a general matrix A ∈ Mn×n(R), note that if A is both
skew-symmetric and symmetric, then AT = −A = A, which implies A = 0.
Furthermore, A can be written as a sum of a skew-symmetric and a symmetric
matrix as follows:

A =
A− AT

2
+
A+ AT

2
.

Together, these two steps prove the direct sum decomposition claimed.
(3) If v1, v2, v3 ∈ V form a basis for a vector space V , show that {v1 + v2 + v3, v2 +

v3, v3} is also a basis.
Solution:
We have to show that the new set of vectors is also linearly independent and

spans V . Since v1, v2, v3 span V , to show that our new set of vectors span V , it
suffices to show that v1, v2, v3 ∈ span(v1 + v2 + v3, v2 + v3, v3). This is verified by
checking

v1 = (v1 + v2 + v3)− (v2 + v3), v2 = (v2 + v3)− v3, v3 = v3.

Thus, if v ∈ V , by assumption we can write

v = c1v1 + c2v2 + c3v3 = c1((v1 + v2 + v3)− (v2 + v3)) + c2((v2 + v3)− v3) + c3v3

= c1(v1 + v2 + v3) + (c2 − c1)(v2 + v3) + (c3 − c2)v3 ∈ span(v1 + v2 + v3, v2 + v3, v3).

To show that our set of vectors is linearly independent, suppose that

c1(v1 + v2 + v3) + c2(v2 + v3) + c3v3 = c1v1 + (c1 + c2)v2 + (c1 + c2 + c3)v3 = 0.

Since v1, v2, v3 are linearly independent, we have

c1 = 0, c1 + c2 = 0, c1 + c2 + c3 = 0,

which implies that c1 = c2 = c3 = 0, implying that our vectors are indeed linearly
independent. Hence, they are also a basis for V , as claimed.

Advanced problem:
A university with n students has m societies such that each society has an odd number

of members. Any two societies have an even number of common members between them
(possibly 0). Show that m ≤ n. (Hint: Consider each society as a vector in a vector
space over the field with two elements F2 = {0, 1}. What do scalar products in this
space have to do with shared society membership, where scalar products are defined in
F n for any field F exactly as they are for Rn? Finally, note that in the vector space
F n for any field F , there are at most n linearly independent vectors by the same row
reduction argument as we used in Rn.)
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Solution: Number the students as 1, 2, . . . n. Consider the vector space Fn
2 . Each

society can be represented by a vector v ∈ Fn
2 , where the j-th student is in the society if

the j-th component of this vector is 1 and is not in the society if the j-th component of
v is 0. We claim that all the society vectors are linearly independent. Indeed, suppose
that the societies are v1, . . . , vm and that there is a relation

v = c1v1 + . . .+ cmvm = 0

where the ci are all 0 or 1. Consider any society vj, and take the scalar product

0 = vj · v =
m∑
i=1

ci(vj · vi).

Now each non-zero contribution to the scalar product of two society vectors corresponds
to a common member, and so the scalar product vj · vi is 1 if the corresponding societies
share an odd number of members and 0 if there are an even number of members in
both. By the original assumptions, all pairwise scalar products of different societies
are thus zero, but a society shares an odd number of members with itself by assumption,
so vj · vj = 1. Thus, we have found that

0 =
m∑
i=1

ci(vj · vi) = cjvj · v=cj.

Continuing in this way for each society shows that c1, c2, . . . cm are all 0. Hence, the
societies yield a set of linearly independent vectors. As there cannot be more than n
linearly independent vectors in Fn

2 , we have established the claim.


