HOMEWORK 7

MA1111: LINEAR ALGEBRA I, MICHAELMAS 2016

Solutions are due at the beginning of class on **Thursday**, **November 24**. Please put your name and course on your assignment, and make sure to staple your papers.

- (1) Consider the basis $\{(-2,3,1), (3,-1,1), (1,-1,-1)\}$ of \mathbb{R}^3 . Compute the coordinates of v = (6,-2,1) with respect to this basis.
- (2) Consider the function $T: M_{2\times 3}(\mathbb{R}) \to M_{2\times 2}(\mathbb{R})$ given by

$$T\begin{pmatrix}a_{11} & a_{12} & a_{13}\\a_{21} & a_{22} & a_{23}\end{pmatrix} = \begin{pmatrix}2a_{11} - a_{12} & a_{13} + 2a_{12}\\0 & 0\end{pmatrix}.$$

- (a) Show that T is a linear transformation.
- (b) Find a basis for $\ker(T)$.
- (c) Find a basis for Im(T).
- (d) What does the rank-nullity theorem claim in this case? Check that this indeed holds, using your answers from (b) and (c).
- (3) Given linear transformations $T_1: V \to W$ and $T_2: W \to W'$ for vector spaces V, W, W', their composition $T = T_2T_1: V \to W'$ is their composition as functions. That is, if $v \in V$, then $T(v) = T_2(T_1(v)) \in W'$. Show that the composition T is also a linear transformation.
- (4) We have seen that the subset of matrices in $M_{n \times n}(\mathbb{R})$ with trace zero (i.e., the sum of elements on their diagonals are zero) are a subspace of $M_{n \times n}(\mathbb{R})$. One way to find the dimension, as you did in a specific case on the last homework, is to explicitly write down a basis. However, there is another method, which this problem will guide you through.
 - (a) Show that the function tr: $M_{n \times n}(\mathbb{R}) \to \mathbb{R}$ which takes the trace of a matrix is a linear transformation.
 - (b) Describe the kernel and image of this transformation.
 - (c) Find the dimension of Im(tr).
 - (d) Using the rank-nullity theorem, find the dimension of the subspace of trace zero matrices in $M_{n \times n}(\mathbb{R})$.