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1. Consider the system of linear equations
x1 + 2x2 + 3x3 = 1

−2x1 − 3x2 + x3 = −1

2x1 + x2 − 3x3 = 1.

(a) Write down an equivalent equation Ax = b, and find A−1.

(b) Use your answer from part (a) to solve the original system of linear equations.

Solutions: (a): Solving the system is equivalent to solving the matrix equation Ax = b

with

A =


1 2 3

−2 −3 1

2 1 −3

 , b =


1

−1

1

 .

To find A−1, we can form the matrix
1 2 3 1 0 0

−2 −3 1 0 1 0

2 1 −3 0 0 1


and use elementary row operations to reduce the first three columns to the identity

matrix I3, giving 
1 0 0 2

3
3
4

11
12

0 1 0 −1
3
−3

4
− 7

12

0 0 1 1
3

1
4

1
12

 ,

from which we read off that

A−1 =


2
3

3
4

11
12

−1
3
−3

4
− 7

12

1
3

1
4

1
12

 .

In studying for the exam, make sure that you are very quick at row reduction. Also recall

that we could have also found the inverse using the adjugate matrix (using cofactors).
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(b): The solution to the system is then given by x = A−1b, which we multiply out to

give

x =


5
6

−1
6

1
6

 .

That is, the solution to the original system is x1 = 5/6, x2 = −1/6, x3 = 1/6.

2. The real polynomials in one variable x of degree at most 2 are denoted by P≤2(R).

(a) Prove that the subset {1 + x, 2 + x+ x2, 4− 3x+ x2} is a basis of P≤2(R).

(b) Find the coordinate vector of 1 + x+ 2x2 with respect to this basis.

Solution:

(a): A polynomial α+βx+γx2 is a linear combination of 1+x, 2+x+x2, 4−3x+x2

if and only if we can solve

a(1+x)+b(2+x+x2)+c(4−3x+x2) = (a+2b+4c)+(a+b−3c)x+(b+c)x2 = α+βx+γx2.

By setting each power of x on each side equal, this is equivalent to the system of

equations 
a+ 2b+ 4c = α

a+ b− 3c = β

b+ c = γ

.

The corresponding matrix equation is
1 2 4

1 1 −3

0 1 1



a

b

c

 =


α

β

γ

 .

To show that the three polynomials in question form a basis, we need to know that they

span the set of polynomials, which is the same as this matrix equation always being

consistent (always having a solution), and that they are linearly independent, which is

the same as saying that only the trivial linear combination (adding up 0 times each one)
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gives the zero polynomial. By the discussion above, this last condition is the same as

saying that the kernel of

A =


1 2 4

1 1 −3

0 1 1


is the trivial subspace {0}. Thus, since this is a square matrix, we know from results in

class that both of the conditions (matrix equation always has a solution and the kernel

is trivial) are equivalent to detA 6= 0. We thus compute, expanding along the first

column:

detA = det

1 −3

1 1

− det

2 4

1 1

 = 4 + 2 = 6 6= 0.

Thus, the set is indeed a basis.

(b): To find the coordinate vector of a polynomial with respect to this basis, we need

to express it as a linear combination of the basis polynomials. This is a special case of

the discussion above: we need to solve Ax = b where b corresponds to the polynomial

whose coordinate vector we are looking for, namely,

b =


1

1

2

 .

We can solve the equation by finding A−1 or by using row reduction. That is, we can

perform row reduction on the matrix
1 2 4 1

1 1 −3 1

0 1 1 2


to obtain the matrix 

1 0 0 −7
3

0 1 0 7
3

0 0 1 −1
3

 .

We thus read off that the coordinate vector in question is (−7/3, 7/3,−1/3).
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3. Let f : M2×2(R)→M2×2(R) be the linear transformation defined by f(A) = BA−AT ,

where M2×2(R) is the space of 2× 2 real-entry matrices, and B = ( 1 2
0 1 ).

(a) Find the matrix associated to f with respect to the standard basis
1 0

0 0

 ,

0 1

0 0

 ,

0 0

1 0

 ,

0 0

0 1

 .

(b) Use your answer from (a) to find a basis for the image of f .

(c) Use your answer from (a) to find a basis for the kernel of f .

Solution:

(a): We compute the image of each of the basis elements under the transformation:

f

1 0

0 0

 =

1 2

0 1

1 0

0 0

−
1 0

0 0

 =

0 0

0 0

 ,

f

0 1

0 0

 =

1 2

0 1

0 1

0 0

−
0 0

1 0

 =

 0 1

−1 0

 ,

f

0 0

1 0

 =

1 2

0 1

0 0

1 0

−
0 1

0 0

 =

2 −1

1 0

 ,

f

0 0

0 1

 =

1 2

0 1

0 0

0 1

−
0 0

0 1

 =

0 2

0 0

 .

The coordinate vectors of these matrices with respect to the standard basis are, re-

spectively, (0, 0, 0, 0), (0, 1,−1, 0), (2,−1, 1, 0), and (0, 2, 0, 0). The matrix for f with

respect to this basis has these vectors as its columns, and is thus

A =


0 0 2 0

0 1 −1 2

0 −1 1 0

0 0 0 0

 .
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(b): Using row reduction, we find that the RREF of A is
0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

 .

This has the same kernel as A, and its kernel is read off by setting the only free variable,

x1 equal to an arbitrary real constant t. Then we solve for the pivotal variables x2, x3, x4,

giving x2 = x3 = x4 = 0. Thus, an arbitrary element of the kernel of A is
t

0

0

0

 = t


1

0

0

0

 ,

and so a basis for the (one-dimensional) kernel of A is given by {(1, 0, 0, 0)}. Thus,

the corresponding basis for the kernel of f is the given by the set of matrices for which

the elements of the basis of the kernel of A are coordinate vectors. That is, a basis for

ker(f) is given by {( 1 0
0 0 )}.

(c): Using the RREF of A we found in (b), we note that this has a pivot in columns

2, 3, 4. The corresponding columns of A are a basis for the column space of A:

{(0, 1,−1, 0), (2,−1, 1, 0), (0, 2, 0, 0)}. The corresponding matrices (for which these

are coordinate vectors) is a basis for the image of f . That is, our basis is
 0 1

−1 0

 ,

2 −1

1 0

 ,

0 2

0 0

 .

Although this suffices to answer the question, it is actually possible to find a much

simpler basis, which you could also find by using the method we gave in class to find

column space by computing the row space of the transpose (we saw that the row space of

a matrix has as a basis simply the non-zeor rows in its RREF). This gives the alternative

basis for the image of f : 
1 0

0 0

 ,

0 1

0 0

 ,

0 0

1 0

 .
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Thus, another way of describing the image is that it is the set of matrices ( a bc d ) with

d = 0.

4. (a) Find the determinant of A =
(
−2 0 0
1 1 1
3 4 1

)
directly from the definition we gave

in class.

(b) Find the determinant of A−1.

Solution: We defined the determinant as the unique function on rows of a square

matrix which is multilinear, alternating (vanishes if two rows are equal), and takes value

1 on the identity matrix. This also implies that the determinant is zero if there is a row

of all zeros, and also that swapping two rows multiplies the determinant by a sign. This

is, in general all we need to compute any determinant. In this case, we find

detA = det((−2, 0, 0), (1, 1, 1), (3, 4, 1)) = det(−2e1, e1 + e2 + e3, 3e1 + 4e2 + e3)

= −2 det(e1, e1 + e2 + e3, 3e1 + 4e2 + e3)

= −2 det(e1, e1, 3e1 + 4e2 + e3)− 2 det(e1, e2, 3e1 + 4e2 + e3)

− 2 det(e1, e3, 3e1 + 4e2 + e3)

= −6 det(e1, e1, e1)− 8 det(e1, e1, e2)− 2 det(e1, e1, e3)

− 6 det(e1, e2, e1)− 8 det(e1, e2, e2)− 2 det(e1, e2, e3)

− 6 det(e1, e3, e1)− 8 det(e1, e3, e2)− 2 det(e1, e3, e3)

= −2 det(e1, e2, e3)− 8 det(e1, e3, e2) = −2 + 8 det(e1, e2, e3) = −2 + 8 = 6.

(b): If a matrix is invertible, then the determinant of the inverse is the reciprocal of the

original determinant. In this case, det(A−1) = 1/6.

5. (a) Given a subspace W of Rn, prove that the orthogonal complement W⊥, defined

by W⊥ = {v ∈ Rn|v · w = 0 for all w ∈ W} is a subspace of Rn.

(b) Prove that if W is a subspace of R3, then we have the direct sum decomposition

R3 = W ⊕W⊥.

Solution:

(a): To check that it is a subspace, we need to verify three conditions: 0 ∈ W⊥,

v1 + v2 ∈ W⊥ for all v1, v2 ∈ W⊥, and cv ∈ W⊥ for all c ∈ R, v ∈ W⊥. To check
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the first, note that 0 · w = 0 for all w ∈ W , as in fact 0 · v = 0 for all V ∈ Rn. For

closure under vector addition, suppose that v1, v2 ∈ W⊥, i.e., that v1 ·w = 0, v2 ·w for

all w ∈ W . Then for any w ∈ W , we have

(v1 + v2)w = v1w + v2w = 0 + 0 = 0,

so that v1+v2 is orthogonal to all elements of W , and hence in W⊥. Finally, if v ∈ W⊥

and c ∈ R, we have, for any w ∈ W ,

(cv) · w = c(v · w) = c · 0 = 0,

so that cv ∈ W⊥. Thus, W⊥ is indeed a subspace of Rn.

(b): There are several possibilities. Firstly, we could have that W is 0 or three di-

mensional, i.e., W = {0} or W = R3. In either case, it is clear that the orthogonal

complement is the other one of these two spaces (the only thing which is orthogonal to

everything is the 0 vector, and everything is orthogonal to the 0 vector). It is also clear

that the direct sum of {0} and R3 is R3, as they clearly intersect only at 0 and every

vector v can be written as a sum v = 0+ v. The other possibility is that W is a line or

a plane through the origin, respectively. In this case, the orthogonal complement is the

plane (resp. line) through the origin which is perpendicular to the line (resp. plane).

Thus, the claim really states that given a plane through the origin and its normal line

through the origin, that R3 is a direct sum of these two subspaces. We have seen in an

explicit way how to do this for examples with numbers on the homework, so we just have

to write down the same equations in general. Suppose that our plane has an equation of

the shape ax+ by+ cz = 0, and then write its normal line through 0 as span{(a, b, c)}.

It is (geometrically, for example) clear that the plane and its normal line only intersect

at the point 0. Thus, we just have to show that every point in R3 is a sum of a point

on the plane and a point on the line. First suppose that a, b, c are all non-zero. Then

a generic point on the plane is of the form (α, β,−aα+bβ
c

), and a generic point on the

line is (γa, γb, γc). We want to show that any point (x, y, z) is of the form

(α, β,−aα + bβ

c
) + (γa, γb, γc) = (α + γa, β + γb,−aα + bβ

c
+ γc) = (x, y, z),
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which is equivalent to solving the matrix equation
1 0 a

0 1 b

−a
c
− b
c

c



α

β

γ

 =


x

y

z

 .

This is always solvable if and only if the determinant isn’t zero, and by expanding along

the first row, we find that its determinant is equal to

det

 1 b

− b
c
c

+ a det

 0 1

−a
c
− b
c

 = c+ b2/c+ a2/c =
a2 + b2 + c2

c
,

which can’t ever be 0 when a, b, c are all non-zero. If exactly one of a, b, c is equal to

0, say without loss of generality that it is c = 0, and so a, b 6= 0. Then we just repeat

the argument above. Namely, a generic point on the plane is of the form (α,−αa/b, β,

and a generic point on the line is (γa, γb, 0). We want to show that any point (x, y, z)

is of the form

(α,−αa/b, β) + (γa, γb, 0) = (α + γa,−αa/b+ γb, β) = (x, y, z),

which is equivalent to solving the matrix equation
1 0 a

−a
b

0 b

0 1 0



α

β

γ

 =


x

y

z

 .

Similarly, we require that this matrix has non-zero determinant. Expanding along the

bottom row, we find that it has determinant

− det

 1 a

−a
b

b

 = −(b+ a/b) = −a
2 + b2

b
,

which again can’t equal 0. If two of a, b, c are equal to 0, then again using symmetry we

can assume b = c = 0, a 6= 0. Then a generic point on the plane is of the form (0, α, β)

and a generic point on the normal line is (γ, 0, 0). Thus, any point (x, y, z) ∈ R3 can

be written as a sum of a point on the plane and the line as follows:

(x, y, z) = (0, y, z) + (x, 0, 0).
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6. Let A be an n× n matrix satisfying A2 = 2A. Find the possible values of detA.

Solution:

Multiplying a row of a matrix by a constant α changes the determinant by a multiple of

α. Thus, if we multiply an n× n matrix by a constant α, we are multiplying every row

by α, and so the new determinant is αn times the old one. Thus, det(2A) = 2n detA.

We also know that in general det(AB) = det(A) det(B), so that det(A2) = det(A)2.

Comparing using the equation A2 = 2A, we have

det(A)2 = 2n det(A).

If det(A) 6= 0 we can divide both sides of the last equation by det(A), giving determinant

2n. That is, the determinant is either 0 or 2n.
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