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1. Higher-type indefinite theta functions: Motivation and applications

In the last two lectures, we described several types of theta functions. In particular,
we discussed how to form convergent, modular functions by summing terms of the form
p(n)qQ(n) (where p is a function possibly depending on v = Im(τ)) as n ranges over an
r-dimensional lattice. We saw that the determination of which functions p are allowed
is dictated by a second-order differential equation of Vignéras. The main difficulty is to
find choices of p which are both interesting (or include as pieces predetermined examples)
and yield convergent sums. If the quadratic form Q is positive definite, then we have
great freedom in picking p, as the terms qQ(n) decay rapidly in all directions. As soon
as there is a negative value of Q(n), however, there will be exponential growth in some
of the terms qQ(n), and so we need to introduce decay or cancellation of terms using the
functions p. Zwegers gave very important examples of (r−1, 1) forms which are built out
of differences of particularly natural solutions to Vignéras’ equation. This realization
has led to many applications throughout number theory, combinatorics, knot theory,
representation theory, and physics.

It is very natural to ask, therefore, whether an analogous theory exists for indefinite
theta functions associated to quadratic forms of arbitrary type. In the search of such
a theory, it is a good idea to look for motivating examples from related fields, such as
physics and representation theory. These alternative perspectives are a guiding force
directing one towards objects which are both natural and are built with applications in
mind. Zwegers’ original motivations in fact did come from such areas, and in particular
the first hints of such a theory were given by Göttsche and Zagier in their study of
Donaldson invariants for certain 4-manifolds, as well as by the work of Andrews, Watson,
and many others on Ramanujan’s mock theta functions.

A theory generalizing the indefinite theta functions of Zwegers has begun to blossom
in just the past year. This is very exciting, as we are now in a similar situation as we
were in directly after Zwegers’ thesis was written; namely, there are many new examples
of modular-type objects to study which are natural on the number theory side and which
have similarly abuntant appearances in other areas of mathematics. Here, we would like
to describe a few instances of where these higher-type functions appear, and give some
indication as to what shapes they take.
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Some early candidates for natural generalizations of Zwegers’ functions were certain
generalized Appell-Lerch sums which were noticed to be connected to partition functions
coming from N = 4 supersymmetric gauge theory. Such partition functions also encode
Poincaré polynomials of moduli spaces of semi-stable sheaves on the projective plane P2

with arbitrary rank r, and Manschot showed how these algebro-geometric objects are
connected to general Appell-Lerch sums. Another instance where general Appell-Lerch
sums were highlighted was in work of Kac and Wakimoto. Extending their work on
s`(m|n)∧ highest weight modules (mentioned in the first lecture in relation to mock
theta functions), Kac and Wakimoto also connected functions of the shape in (1) to
representations of affine superalgebras.

Definition. Let Q be a positive-dimensional quadratic form for an n+-dimensional lat-
tice Λ. Now suppose that we choose m1, . . . ,mn− in the dual lattice Λ∗. Then for
u = (u1, . . . , un−) ∈ Cn− , and for v ∈ Λ∗ ⊗ C ∼= Cn+ , we define the type (n+, n−)
Appell-Lerch sum by

(1) AQ,{mj}(u, v; τ) :=
∑
k∈Λ

q
Q(k)

2 e(v · k)∏n−
`=1 (1− qk·m`e(u`))

.

Kac and Wakimoto required the vectors mj to be pairwise orthogonal (which, as we
shall hint at below, often makes the functions much simpler), but the applications in
gauge theory require more general sets of vectors. As discussed in the first lecture,
via geometric series expansions we can essentially think of these functions as indefinite
theta series for a quadratic form of type (n+, n−). As just two more examples of natural
contexts for such indefinite theta functions, we refer the reader to important connections
to knot theory made by Hikami and Lovejoy (discussed further in the fourth lecture), as
well as series related to Gromov-Witten theory discussed in Section 4.

2. New Realizations

We now describe the recent progress which has been made in understanding the gen-
eralized versions of Zwegers’ functions. Early modularity results were proven in several
cases. For example, Westerholt-Raum used the theory of H-harmonic Maass-Jacobi
forms to describe and characterize certain higher-type indefinite theta functions which
are modular but of a more complicated type than harmonic Maass forms (these are
higher depth forms; cf. Section 3). As we shall discuss in Section 4, Bringmann, Zwegers,
and the author showed modularity results for special examples with an application to
Gromov-Witten theory (and this program set forth by Lau and Zhou was completed
later by Bringmann, Kaszian, and the author). More hints were also offered in work by
Bringmann, Manschot, and the author, where certain suggestive elliptic transformations
of higher-type Appell-Lerch sums were shown, and which gave alternative, direct proofs
of certain blow-up formulas.
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A few months ago, a major breakthrough was achieved by Alexandrov, Banerjee,
Manschot, and Pioline. Their work made the general picture of Zwegers’-type results
for indefinite quadratic forms of type (r− 2, 2) clear, and offered a path to a completely
general picture of (r − s, s)-type indefinite theta functions. As discussed above, one of
the main obscurities in the field before this breakthrough was how to find an appropriate
function p which satisfies Vignéras’ equation which can play the role that the special
function E did in Zwegers’ case. In this situation, it turns out that the “right” functions
are what they call double error functions. These arose from string-theoretic consid-
erations, and are certain Penrose-type integrals. These functions are two-dimensional
integrals, but also involve integrating square exponential terms. Explicitly, (although
this is a somewhat rewritten form from the original definition, and is stated in their
Theorem 3.11), we define for α ∈ R, (u1, u2) ∈ R2 with u1 6= 0, u2 6= αu1 the function

E2(α;u1, u2) :=

∫
R2

e−π(u1−z1)2−π(u2−z2)2sign(z2)sign(z1 + αz2)dz1dz2.

Remark. Constructions such as this can also be considered to be special cases of related
results Borcherds used to construct Siegel theta functions.

Remark. It is also possible to write the function E from Zwegers’ thesis in a similar
shape, namely:

E(u) =

∫
R
e−π(u−t)2sign(t)dt.

This function has the following desirable properties (Exercise 1 will ask you to show
the first one):

(1) The function E2 satisfies Vignéras’ equation for Q(u1, u2) = u2
1 + u2

2 with λ = 0.
(2) Towards infinity, we have

E2(α;u1, u2) ∼ sgn(u2) sgn(u1 + αu2).

Now, given a quadratic form Q of type (r−2, 2) and vectors c1, c2 with Q(c1), Q(c2) < 0
and ∆(c1, c2) := Q(c1)Q(c2)−B(c1, c2)2 > 0, we can define the boosted error function

E2(c1, c2;x) := E2

(
B(c1, c2)√
∆(c1, c2)

;
B(c1⊥2, x)√
Q(c1⊥2)

,
B(c2, x)√
Q(c2)

)
,

where

c1⊥2 := c1 −
B(c1, c2)

Q(c2)
c2.

The point is that this “boosted” function now satisfies Vignéras’ equation with λ = 0 for
our quadratic form Q, and towards infinity it grows like a product of two sign functions:

(2) E(c1, c2;x) ∼ sgn(B(c1, x)) sgn(B(c2, x)).
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Similar to the case in Zwegers’ thesis, convergent indefinite theta series of type (r−2, 2)
can be build out of pairs of these boosted functions; for example (2) can be used to show
that these indefinite theta series have “holomorphic parts” with a shape∑

n∈Zr
(sgn(B(c1, n))− sgn(B(c′1, n))) (sgn(B(c2, n))− sgn(B(c′2, n))) qQ(n).

As another example, Alexandrov, Banerjee, Manschot, and Pioline gave modular com-
pletions of generalized µ-functions such as (ζj := e(zj))

µ2,1(z1, z2; τ) :=
1

2
+

ζ
1
2
1

ϑ(z2; τ)

∑
n1,n2∈Z

ζn1+2n2
2 qn

2
1+n2

2+n1n2+2n1n2

1− ζ1q2n1+n2
.

Following these results of Alexandrov, Banerjee, Manschot, and Pioline, using a
roadmap which they described at the end of their work, general Zwegers’-type indefinite
theta functions were elucidated by Nazaroglu for (n − r, r) quadratic forms (although
the “cuspidal” case hasn’t been worked out yet). Exercises 4 and 5 will ask you to work
out some properties of some higher-type error functions which can be used to construct
generalized examples.

3. Higher depth mock modular forms

The functions constructed by Alexandrov, Banerjee, Manschot, and Pioline should
play an important role in number theory, since they have many applications, as dis-
cussed above. It is natural to ask what spaces these modular-type objects live in. The
results described above show that these functions transform like modular forms, but like
harmonic Maass forms, they should be “completions” of holomorphic functions which
are built out of “simpler” functions. It turns out that the correct definition for such
spaces is the following.

Definition (Zagier-Zwegers,Westerholt-Raum). Let M0
k := Mk, the space of modular

forms of weight k. For d > 0, define the space Md
k of depth d forms to be the space of

functions which transform like modular forms and whose images under ξk lie in∑
`

M` ⊗Md−1
k−` .

For example, the depth 1 forms are just the mixed mock modular forms, briefly
discussed in the last two lectures. The reason that such indefinite theta functions built
using Vignéras’ theorem often lie in such spaces follows by a useful fact noticed by
Vignéras. Namely, the Maass lowering operator

Lk := −2iv2 ∂

∂τ

is essentially the shadow operator ξk and intertwines in a beautiful way with indefinite
theta functions. In particular, if p satisfies Vigneras’ equation with eigenvalue λ, then
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E − λ sends p to an eigenfunction with eignvalue λ− 2, and the theta function built out
of this function is (up to a fixed constant) the lowering operator applied on the indefinite
theta function for p. Exercise 2 will ask you to compute the action of this operator on
the double error function E2, which directly shows how the type (r − 2, 2) indefinite
theta functions above are depth 2 forms.

4. An example from Gromov-Witten theory

Several examples which arises from Gromov-Witten theory of elliptic orbifolds were
studied by Bringmann-R.-Zwegers and Bringmann-Kaszian-R., and are motivated by
their connections to mirror symmetry and applications of modularity results in extending
certain potentials to global moduli spaces. Most of the functions which arise can be
written very neatly in terms of the simple indefinite theta function

F (z1, z2, z3; τ) := q−
1
8 ζ
− 1

2
1 ζ

1
2
2 ζ

1
2
3

( ∑
k>0, `,m≥0

+
∑

k≤0, `,m<0

)
(−1)kq

1
2
k2+ 1

2
k+k`+km+`mζk1 ζ

`
2ζ
m
3 .

The key result which makes the applications to Gromov-Witten theory possible is then
the following curious identity (|Im(z2)|, |Im(z3)| < Im(τ)):

F (z1, z2, z3; τ) = iϑ(z1; τ)µ(z1, z2; τ)µ(z1, z3; τ)− η3(τ)ϑ(z2 + z3; τ)

ϑ(z2; τ)ϑ(z3; τ)
µ(z1, z2 + z3; τ).

(3)

Although this identity can be proven using calculations of the corresponding elliptic
transformations together with Liouville’s theorem (Exercise 3 will ask you to explore
some of the steps of these calculations), such “elementary” considerations prove most
of the main results in Chapter 1 of Zwegers’ thesis as well. As was the case for the
µ-function, the most interesting task it to find such a decomposition in the first place.

Note that this example is also of a much simpler form than the general higher-type
indefinite theta functions defined above; indeed, it splits into products of modular and
mock modular forms. The general philosophy about such situations is that these special
scenarios typically happen when the quadratic form is degenerate (as in this case), the
vectors such as those in (1) have orthogonality relations, and the quadratic form has
inordinately many symmetries in its variables.

5. Exercises

(1) Show that the double error function E2(α;u1, u2) satisfies Vignéras’ equation for
Q(u1, u2) = u2

1 + u2
2 with λ = 0. That is, show(

∂2
w1

+ ∂2
w2

+ 2π (w1∂w1 + w2∂w2)
)
E2 (α;w1, w2) = 0,
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(2) Show that

∂w2E2 (α;w1, w2) =
2√

1 + α2
e
−π(w2+αw1)

2

1+α2 E

(
αw2 − w1√

1 + α2

)
, and

∂w1E2 (α;w1, w2) = 2e−πw
2
1E (w2) +

2α√
1 + α2

e
−π(w2+αw1)

2

1+α2 E

(
αw2 − w1√

1 + α2

)
.

Using the discussion in Section 3, deduce what the shadows (or lowering operators
of) indefinite theta functions built out of the boosted functions E2 are.

(3) In this problem, you will consider some of the first steps towards proving (3).
The idea is to consider both sides of the equation as functions of z3, and compute
their elliptic transformations and locations of poles and residues. Showing that
these all match will then show, by a standard application of Liouville’s theorem
(as it is commonly used in elliptic function theory) that the identity holds.

Here you will prove the desired transformation for the left-hand-side. First,
show, using geometric series, that for |y3| < v (z3 = x3 + iy3), we can write the
left-hand-side fL(z3) as

q−
1
8 ζ
− 1

2
1 ζ

1
2
2 ζ

1
2
3

 ∑
k,`∈Z

k>0, `≥0

−
∑
k,`∈Z

k≤0, `<0

 (−1)kq
1
2
k2+ 1

2
k+k`ζk1 ζ

`
2

1− ζ3qk+`

= q−
1
8 ζ
− 1

2
1 ζ

1
2
2 ζ

1
2
3

∑
k,`∈Z

ρ(k − 1, `)
(−1)kq

1
2
k2+ 1

2
k+k`ζk1 ζ

`
2

1− ζ3qk+`
,

where

ρ(k, `) :=


1 if k, ` ≥ 0,

−1 if k, ` < 0,

0 otherwise.

For 0 < y2 < v, show that

ζ
− 1

2
2 ϑ(z1)µ(z1, z2) =

∑
k,`∈Z

ρ(k, `)
(−1)kq

1
2
k2+ 1

2
k+k`ζk1 ζ

`
2

1− ζ3qk+`+1
− ζ3

∑
k,`∈Z

ρ(k, `)
(−1)kq

1
2
k2+ 3

2
k+1+k`+`ζk1 ζ

`
2

1− ζ3qk+`+1
.

Using the easily checked identity

ρ(k, `) = ρ(k − 1, `) + δk,

(δk = 1 if k = 0 and δk = 0 otherwise) in the first sum and replacing k by k − 1
in the second, compute that

ζ
− 1

2
2 ϑ(z1)µ(z1, z2) = q−

3
8 ζ

1
2
1 ζ
− 1

2
2 ζ

− 1
2

3 fL(z3 + τ)− iζ−1
2

η3ϑ(z2 + z3)

ϑ(z2)ϑ(z3)
+ q

1
8 ζ
− 1

2
1 ζ

− 1
2

2 ζ
1
2
3 fL(z3).
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(Hint: use the identity∑
`∈Z

ζ`2
1− ζ3q`+1

= −iζ−1
2

η3ϑ(z2 + z3)

ϑ(z2)ϑ(z3)
.)

Conclude that

fL(z3) + q−
1
2 ζ1ζ

−1
3 fL(z3 + τ) = q−

1
8 ζ

1
2
1 ζ
− 1

2
3 ϑ(z1)µ(z1, z2) + iq−

1
8 ζ

1
2
1 ζ
− 1

2
2 ζ

− 1
2

3

η3ϑ(z2 + z3)

ϑ(z2)ϑ(z3)
.

(4) Define a generalized error function (N ≥ 3) EN : R
N(N−1)

2 × RN → R by

EN(α;w)

:=

∫
RN

sign(t1)sign(t2 + α1t1)sign(t3 + α2t1 + α3t2) · · · sign
(
tN + . . .+ αN(N−1)

2

tN−1

)
e−π‖t−w‖

2
2dt,

where ‖a‖2 :=
√
aTa denotes the Euclidian norm. Show that, as λ→∞,

E3(α;λw) ∼ sign (w1) sign (w2 + α1w1) sign (w3 + α2w1 + α3w2) .

Hint: Change variables to show

E3 (α;w1, w2, w3) =

∫
R3

e−πt
TMtsign (t1 + w1) sign (t2 + v2) sign (t3 + v3) dt,

where t := (t1, t2, t3)T , v2 := w2 + α1w1, v3 := w3 + α2w1 + α3w2, and

M :=

1 + (α1α3 − α2)2 + α2
1 −α1 − α3(α1α3 − α2) α1α3 − α2

−α1 − α3(α1α3 − α2) α2
3 + 1 −α3

α1α3 − α2 −α3 1

 .

Now consider the difference

E3(α;λw1, λw2, λw3)− sign (w1) sign (w2 + α1w1) sign (w3 + α3w2 + α2w1)

=

∫
R3

e−πt
TMt
(
sign (t1 + λv1) sign (t2 + λv2) sign (t3 + λv3)− sign (v1) sign (v2) sign (v3)

)
dt.

(5) Prove the analogue of the Vignéras equation in Exercise 1 for E3. Specifically,
show that

3∑
j=1

(
∂2
wj

+ 2wj∂wj

)
E3(α;w) = 0.
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