
TUTORIAL 7 SOLUTIONS

MA1132: ADVANCED CALCULUS, HILARY 2017

(1) Using the method of Lagrange multipliers, find the point on the plane x−y+3z =
1 closest to the origin.

Solution: The distance of an arbitrary point (x, y, z) from the origin is d =√
x2 + y2 + z2. It is geometrically clear that there is an absolute minimum of

this function for (x, y, z) lying on the plane. To find it, we instead minimize the
function

d2 = f(x, y, z) = x2 + y2 + z2

subject to the constraint g(x, y, z) = 0 where g(x, y, z) = x − y + 3z − 1. The
gradients of these two functions are ∇f = (2x, 2y, 2z), ∇g = (1,−1, 3). Since
∇g 6= 0 ever, the absolute minimum of the distance function we are looking for
will occur at a point where

∇f = λg, g = 0.

Getting rid of the 2’s in ∇f (which all get absorbed into the dummy constant λ)
and setting components of the gradient equation equation, we obtain the system
of equations 

x = λ

y = −λ
z = 3λ

x− y + 3z = 1.

Solving the first three equations gives y = −x, z = 3x. Plugging these into the
equation of the plane gives x+x+9x = 11x = 1, and so the point we are looking
for is x = 1/11, y = −1/11, z = 3/11.

(2) Compute the double integral

∫ 1

0

∫ √log 2
0

xyex
2

dxdy.

1



2 MA1132: ADVANCED CALCULUS, HILARY 2017

Solution: We evaluate:∫ 1

0

∫ √log 2
0
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2

dxdy =

∫ 1

0

y

(∫ √log 2
0

xex
2

dx

)
dy

=

∫ 1

0

y

[
ex

2
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]√log 2
x=0

dy

=

∫ 1

0

y

(
1− 1

2

)
dy =

∫ 1

0
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=

[
y2

4

]1
0

=
1

4
.

(3) Find the volume under the surface z = x
y

and above the rectangular region

R = [0, 2]× [1, 3] in the x-y plane.
Solution: The function f(x, y) = x/y is always non-negative on [0, 2]× [1, 3],

and so the double integral
∫∫

R
f(x, y)dA which in general gives the net volume,

gives the actual volume in this case. Thus, the volume we want to compute is

V =

∫ 3

1

∫ 2

0

x

y
dxdy

=

∫ 3

1

y−1
(∫ 2

0

x

)
dxdy

=

∫ 3

1

y−1
[
x2

2

]2
0

dy

=

∫ 3

1

2

y
dy = [2 log y]31 = 2 log 3.

Advanced Problem: Suppose that A = (Aij) is a symmetric, real-valued n × n
matrix. Define a function f : Rn → R by the dot product f(x) = x ·Ax. Show that the
largest and smallest values of f on the unit sphere {x ∈ Rn||x| = 1} are the largest and
smallest (real) eigenvalues of A. (Hints: Use the method of Lagrange multipliers. What
is ∇f? What is ∇g where g(x) = x · x− 1? Try writing down a few examples for small
n first.) Deduce that every real-valued, symmetric n × n matrix has at least one real
eigenvalue.

Solution: The function f is clearly continuous, and the sphere is a compact set,
so by the Extreme Value Theorem, f has a global max and min on the sphere. We
want to extremize f subject to the constraint g = 0 with g(x) = x · x − 1. Writing
this out using coordinates, say x = (x1, . . . , xn), g(x1, . . . , xn) = x21 + . . . + x2n − 1, and
so ∇g(x) = (2x1, . . . , 2xn) = 2x. On the sphere, ∇g thus doesn’t vanish, and so our
extrema must occur at points where ∇f = λg and g = 0 (there are no boundary points
of the sphere to consider).
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Now we compute the gradient ∇f . First, we write out f explicitly using the coor-
dinates of x and matrix entries Aij. Specifically, we see that f(x) =

∑n
i=1 xi(Ax)i =∑n

i=1 xi
∑n

j=1Aijxj =
∑n

i=1

∑n
j=1Aijxixj. Now suppose we take the derivative of the

last expression with respect to xi. There are two types of pieces which will survive
the differentiation. There is the piece Aiix

2
i , which has derivative 2Aiixi. For each

j 6= i, there are also two pieces Aijxixj and Ajixjxi. Since the matrix A is symmetric,
Aij = Aji, and the sum of these two pieces is 2Aijxixj, which has derivative 2Aijxj.
Thus,

∂f

∂xi
= 2Aiixi +

n∑
j=1
i 6=j

2Aijxj = 2
n∑

j=1

Aijxj = 2(Ax)i.

Putting all the derivatives together implies that ∇f = 2Ax. Thus, the equation ∇f =
λ∇g becomes Ax = λx, which implies that x is an eigenvector of A with eigenvalue λ.
Hence, the maximum and minimum values of f on the sphere occur at eigenvectors of
A. At such an eigenvector, f(x) = x · Ax = x · (λx) = λx · x = λ, as the vector x lies
on the sphere. Thus, the maximum and minimum values of f on the sphere are the
largest and smallest eigenvlaues of A. In particular, since the Extreme Value Theorem
guarantees that such a max and a min exist, that A has at least one real eigenvalue.
This is the main step in proving a very important result, known as the real spectral
theorem. That is, you can inductively use this result to show that all eigenvalues of A
are real. This is somewhat like to prove the Fundamental Theorem of Algebra (that all
complex-coefficient polynomials of degree n ≥ 1 have n complex roots) follows easily
after one shows the much more difficult step that every such polynomial has at least one
complex root.


