TUTORIAL 7 SOLUTIONS

MA1132: ADVANCED CALCULUS, HILARY 2017

(1) Using the method of Lagrange multipliers, find the point on the plane x—y+3z =
1 closest to the origin.
Solution: The distance of an arbitrary point (z,y, z) from the origin is d =
V2 +y? + 22 It is geometrically clear that there is an absolute minimum of
this function for (z,y, z) lying on the plane. To find it, we instead minimize the
function

d2:f(x,y,z):x2+y2+22

subject to the constraint g(x,y,z) = 0 where g(z,y,2) = x —y + 3z — 1. The
gradients of these two functions are Vf = (2z,2y,22), Vg = (1,—1,3). Since
Vg # 0 ever, the absolute minimum of the distance function we are looking for
will occur at a point where

V=g, g=0.
Getting rid of the 2’s in V f (which all get absorbed into the dummy constant \)

and setting components of the gradient equation equation, we obtain the system
of equations

r=A\
y=—A
z =3\
r—y+3z=1

Solving the first three equations gives y = —x, 2z = 3x. Plugging these into the
equation of the plane gives x+x+9x = 11z = 1, and so the point we are looking
foris x =1/11, y = —1/11, z = 3/11.

(2) Compute the double integral
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Solution: We evaluate:
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(3) Find the volume under the surface z = Y and above the rectangular region

R =10,2] x [1,3] in the z-y plane.

Solution: The function f(x,y) = x/y is always non-negative on [0, 2] x [1, 3],
and so the double integral f f » J(7,y)dA which in general gives the net volume,
gives the actual volume in this case. Thus, the volume we want to compute is
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Advanced Problem: Suppose that A = (A;;) is a symmetric, real-valued n x n
matrix. Define a function f: R™ — R by the dot product f(x) =z - Az. Show that the
largest and smallest values of f on the unit sphere {x € R"||z| = 1} are the largest and
smallest (real) eigenvalues of A. (Hints: Use the method of Lagrange multipliers. What
is Vf? What is Vg where g(z) = -z — 1?7 Try writing down a few examples for small
n first.) Deduce that every real-valued, symmetric n x n matrix has at least one real
eigenvalue.

Solution: The function f is clearly continuous, and the sphere is a compact set,
so by the Extreme Value Theorem, f has a global max and min on the sphere. We
want to extremize f subject to the constraint ¢ = 0 with g(z) = = - x — 1. Writing
this out using coordinates, say * = (z1,...,2,), (1, ..., 2,) = 23 + ...+ 22 — 1, and
so Vg(z) = (221, ...,2x,) = 2z. On the sphere, Vg thus doesn’t vanish, and so our
extrema must occur at points where Vf = Ag and g = 0 (there are no boundary points
of the sphere to consider).



TUTORIAL 7 SOLUTIONS 3

Now we compute the gradient Vf. First, we write out f explicitly using the coor-
dinates of z and matrix entries A;;. Specifically, we see that f(z) = > 1", z;(Azx); =
Do iy Ay = Y0 00, Aijriry. Now suppose we take the derivative of the
last expression with respect to x;. There are two types of pieces which will survive
the differentiation. There is the piece A;x?, which has derivative 2A;z;. For each
J # 1, there are also two pieces A;;x;x; and Ajx;x;. Since the matrix A is symmetric,

A;; = Aj;, and the sum of these two pieces is 2A;;x;x;, which has derivative 24;;z;.
Thus,
8f n n
’ =1 j=1
1#]

Putting all the derivatives together implies that Vf = 2Axz. Thus, the equation V f =
AV g becomes Ax = Az, which implies that x is an eigenvector of A with eigenvalue \.
Hence, the maximum and minimum values of f on the sphere occur at eigenvectors of
A. At such an eigenvector, f(z) = x- Ax =z - (A\x) = Az - & = A, as the vector x lies
on the sphere. Thus, the maximum and minimum values of f on the sphere are the
largest and smallest eigenvlaues of A. In particular, since the Extreme Value Theorem
guarantees that such a max and a min exist, that A has at least one real eigenvalue.
This is the main step in proving a very important result, known as the real spectral
theorem. That is, you can inductively use this result to show that all eigenvalues of A
are real. This is somewhat like to prove the Fundamental Theorem of Algebra (that all
complex-coefficient polynomials of degree n > 1 have n complex roots) follows easily
after one shows the much more difficult step that every such polynomial has at least one
complex root.



