
TUTORIAL 6 SOLUTIONS

MA1132: ADVANCED CALCULUS, HILARY 2017

(1) Consider the surface S given by the equation x3y − xyz = 10.
(a) Find the equation for the tangent plane to this surface at P = (2, 1,−1).
(b) Find parametric equations for the tangent line of the curve of intersection

of the surface S with the plane z = −1 at the same point P = (2, 1,−1).
Solution:

a). The surface is the set of points where F (x, y, z) = 0, with F (x, y, z) =
x3y − xyz − 10. We then compute the gradient in general:

∇F = (Fx, Fy, Fz) = (3x2y − yz, x3 − xz,−xy)

and at P :

∇F (2, 1,−1) = (13, 10,−2).

Thus, a normal line to the tangent plane of S at P is given by (13, 10,−2), and
using the fact that P is on the surface, an equation of the plane is given by

13(x− 2) + 10(y − 1)− 2(z + 1) = 0,

or, equivalently,

13x+ 10y − 2z = 38.

b). The plane z = −1 is of course the set of points with G(x, y, z) = 0 where
G(x, y, z) = z + 1. We then compute the gradient:

∇G = (0, 0, 1),

which is the same for all points P . Thus, at P , the normal lines to S and the
plane z = −1 are (13, 10,−2) and (0, 0, 1), respectively. Thus, the tangent line to
the curve of intersection between S and this plane is parallel to the cross product
(13, 10,−2)× (0, 0, 1) = (10,−13, 0). We can thus take (10,−13, 0) as a tangent
vector, and a point on the curve of intersection is of course P = (2, 1,−1), so
that parametric equations for the tangent line are given by

x = 2 + 10t

y = 1− 13t

z = −1.

Alternatively, we could also have explicitly written an equation for the curve
of intersection. That is, using z = −1 gives x3y + xy = 10, or y(x3 + x) = 10.
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Implicitly differentiating gives

y′(x3 + x) + y(3x2 + 1) = 0,

which gives y′ = −13/10 when x = 2, y = 1 is plugged in. Using that fact that
the curve, and hence its tangent line, lie in the plane z = −1, along with this
slope of the line and the given point on the line immediately allows one to recover
the above system of parametric equations for it.

(2) Suppose f(x, y) is a function with critical points at (1,−1), (−1, 1), and (0, 0)
and with second order partial derivatives given by

fxx = 12x2 − 2y2, fyy = −2x2 + 12y2, fxy = fyx = −4xy + 2.

For all three critical points, determine whether the second derivative test says
that the function has a local max, local min, saddle point or gives no information.

Solution: We have to look at the sign of the number D = fxxfyy − f 2
xy at all

three points. For the first two points (1,−1) and (−1, 1), fxx = 12 − 2 = 10,
fyy = −2 + 12 = 10, and fxy = 4 + 2 = 6, so D = 100 − 36 = 64 > 0, and so
f has local extrema at these two points. To find out whether they are maxes or
mins, we have to look at the sign of fxx. In both cases, as we saw, fxx = 10 > 0,
and so there is a local minimum at both points.

At the third critical point (0, 0), fxx = 0, fyy = 0, and fxy = 2, and so
D = −4 < 0. Hence, f has a saddle point at (0, 0).

(3) The Extreme Value Theorem guarantees that the continuous function f(x, y) =
x sin(y) has a global maximum value and a global minimum value in the square
region (box) {(x, y) : −1 ≤ x ≤ 1, −1 ≤ y ≤ 1}. Find these global maximum
and minimum values.

Solution: We first find the critical points of f . Since f is differentiable
everywhere, these will only be at those points where fx = fy = 0. Taking these
derivatives, this means that we need to solve the system of equations{

fx = sin y = 0

fy = x cos y = 0.

Now there are two cases. If x = 0, then fy = 0, and fx = 0 if sin(y) = 0. This
happens if y is an integer multiple of π, but inside our box −1 ≤ y ≤ 1, and so
the only critical point inside the box is (0, 0). If x 6= 0, then all critical points
have sin y = cos y = 0, which never happens (in particular, sin2 y + cos2 y = 1
for all y). Thus, (0, 0) is the only critical point we have to consider. The value
of the function at this point is f(0, 0) = 0.

We now look at the function on the boundary, which consists of four pieces.
These are the four sides of the square surrounding the box, and are the sets

B1 = {(x, y) : x = 1, −1 ≤ y ≤ 1},
B2 = {(x, y) : x = −1, −1 ≤ y ≤ 1},



TUTORIAL 6 SOLUTIONS 3

B3 = {(x, y) : −1 ≤ x ≤ 1, y = 1},
B4 = {(x, y) : −1 ≤ x ≤ 1, y = −1},

On B1, we have to maximize

g(y) = f(1, y) = sin y

on [−1, 1]. The critical points of g occur when g′(y) = cos y = 0, which doesn’t
happen on the interval [−1, 1]. Thus, the extrema on this boundary piece oc-
cur at the endpoints. Hence, we compute g(−1) = sin(−1) = − sin(1) and
g(1) = sin(1), and see that on B1, the minimum value of f is − sin(1) and the
maximum value is sin(1). Similarly, on B2, we have to optimize the function
g(y) = f(−1, y) = − sin(y) on [−1, 1]. In this case, g′(y) = − cos y, which never
vanishes on [−1, 1], and so the maximum and minimum on B2 also occur at
the endpoints and give a maximum value of g(−1) = − sin(−1) = sin(1) and a
minimum value of g(1) = − sin(1).

On B3, we have to optimize the function

g(x) = f(x, 1) = x sin(1)

on [−1, 1]. This is just a linear function, and so it is clear (or can of course
be seen by checking that g′(x) = sin(1) never vanishes and by comparing the
values at the endpoints) that the minimum value of f on B3 is − sin(1) and the
maximum value is sin(1). Similarly, on B4, we have to optimize the function

g(x) = f(x,−1) = −x sin(1),

which has the same maximum and minimum values.
Thus, by comparing the values of f at all critical points (in this case, only

at (0, 0)) and all global extrema on the pieces of the boundary, we see that the
maximum value of f in our square region is sin(1), and that the minimum value
is − sin(1).
Advanced Problem: As mentioned in class, for functions f(x1, . . . , xn) of

more than two variables, critical points occur in general where the gradient ∇f =
(fx1 , . . . , fxn) is the zero vector (or is undefined). For such points, there is an
analogous second derivative test to determine whether these critical points are
local minima, local maxima, saddle points, or neither. This involves the Hessian
matrix, the matrix of all second order partial derivatives

fx1x1 fx1x2 · · · fx1xn

fx2x1 fx2x2 · · · fx2xn

...
...

...
...

fxnx1 fxnx2 · · · fxnxn

 .

That is, the (i, j)-th entry of this matrix is fxixj
. Generalizing the one and two-

variable cases we already know, the general second derivative test states that
f has a local maximum if all eigenvalues of this matrix are negative, that f
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has a local minimum if all eigenvalues are positive, has a saddle point if some
eigenvalues are negative and some are positive, but none are vanishing, and if
at least one eigenvalue vanishes (i.e., the matrix has determinant zero), then the
test is inconclusive.

Consider the function f(x, y, z) = x2 + y2 + z2. Of course, geometrically, f is
the distance of the point (x, y, z) from the origin, so clearly f has a minimum at
the origin. However, forget that you know this fact, and use the above test to
find all critical points of f and classify them using the second derivative test.

Solution: The gradient in this case is ∇f = (2x, 2y, 2z). This vanishes when
2x = 2y = 2z = 0, or just when x = y = 0. Hence, the only critical point
is at the origin. Now we compute the Hessian matrix. The first order partial
derivatives are

fx = 2x, fy = 2y, fz = 2z,

as we have seen, and so the Hessian matrix is (note that all mixed partial deriva-
tives are zero) fxx fxy fxz

fyx fyy fyz
fzx fzy fzz

 =

2 0 0
0 2 0
0 0 2

 .

As this matrix is diagonal, we can read off its eigenvalues as 2, 2, 2. Thus, all
eigenvalues (just the eigenvalue 2 with multiplicity 3) are positive, and so the
function has a local minimum at (0, 0, 0), as claimed.


