
HOMEWORK 6 SOLUTIONS

MA1132: ADVANCED CALCULUS, HILARY 2017

(1) Find the equation to the tangent plane of the surface z = f(x, y) = xey at the
point where x = 3, y = 0. Also find parametric equations of the normal line to
this plane.

Solution: This surface is given by the equation F (x, y, z) = 0, where F (x, y, z) =
f(x, y)− z = xey − z. We then compute that

∇F = (Fx, Fy, Fz) = (ey, xey,−1).

Plugging in the point (3, 0, 3e0) = (3, 0, 3) gives

∇F (3, 0, 3) = (1, 3,−1),

which is a normal vector to the tangent plane. Hence, the equation of the tangent
plane is

(x− 3) + 3y − (z − 3) = 0,

or
x + 3y − z = 0.

The normal line is parallel to (1, 3,−1) and passes through (3, 0, 3), and so can
be parameterized as 

x = 3 + t

y = 3t

z = 3− t.

(2) Describe the intersection between the two surfaces x2 + y2 + z2 = 2 and z2 =
x2 + y2. Show that at all points in the intersection, the normal vectors of the
two corresponding tangent planes are perpendicular. Further find parametric
equations of the tangent line to the curve of intersection passing through P =
(1, 0,−1) at P .

Solution: If a point (x, y, z) is on both surfaces, then by using the second
equation, x2 + y2 = z2, and plugging into the equation defining the first surface,
we find

z2 + z2 = 2z2 = 2,

or z = ±1. Thus, we find that the intersection is the union of two circles, which
are described by the equation x2 + y2 = 1 together with the constraint that
they lie in the planes z = ±1. Geometrically, this intersection was between a
sphere and a (double) cone. These two surfaces are defined by F (x, y, z) = 0,
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G(x, y, z) = 0 with F (x, y, z) = x2 + y2 + z2 − 2, G(x, y, z) = x2 + y2 − z2. We
then compute

∇F = (2x, 2y, 2z) = 2(x, y, z),

∇G = (2x, 2y,−2z) = 2(x, y,−z).

At any point on the circles of intersection, these two vectors give the normal lines
of the tangent planes of the two surfaces. The two vectors are orthogonal at all
such intersection points, since

(x, y, z) · (x, y,−z) = x2 + y2 − z2 = 0

for all such points since this last equality just says that the point lies on the cone
x2 + y2 = z2.

To find the tangent line through the circle of intersection with z = −1 at P ,
we first compute (rescaling out factors of 2 for convenience)

1

2
∇F (1, 0,−1) = (1, 0,−1),

1

2
∇G(1, 0,−1) = (1, 0, 1).

A vector parallel to the tangent line is then given by the cross product of these
two vectors, which is (1, 0,−1) × (1, 0, 1) = −2(0, 1, 0). Thus, (0, 1, 0) points in
the direction of the tangent line, which also passes through (1, 0,−1), and so
parametric equtions for this line may be given by

x = 1

y = t

z = −1.

This line may also be specified by the equations x = 1, z = −1. Geometrically,
we were computing the tangent line to the circle x2 + y2 = 1 in the plane z = −1
at the “rightmost point” (looking from above with the x-axis pointing to the
right as usual), and we found that in this plane the tangent line is a “vertical”
tangent line x = 1, which we also already knew geometrically.

(3) Find the local (aka relative) extrema and saddle points of the function

f(x, y) = −4x2y + 2x2 + y2 − 7.

Solution: We compute (the first derivatives are needed to find the critical
points, the second derivatives are computed now for convenience since we will
need them to classify the critical points anyways)

fx = −8xy + 4x,

fy = −4x2 + 2y,

fxx = −8y + 4,

fyy = 2,
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fxy = fyx = −8x.

The function f is clearly differentiable (as its a polynomial), and so the critical
points will occur only at those points when fx = fy = 0. Thus, we have to solve
the system of equations {

−8xy + 4x = 0,

−4x2 + 2y = 0.

The first equation is equivalent to x(1 − 2y) = 0. Thus, there are two cases, if
x = 0, then by plugging into the second equation we get the critical point (0, 0).
If x 6= 0, then 1 − 2y = 0, and so y = 1/2. Plugging into the second equation
gives

−4x2 + 1 = 0,

which has solutions x = ±1
2
. Thus, the 3 critical points of f are (0, 0), (1/2, 1/2),

and (−1/2, 1/2). To classify these critical points, we plug them into the expres-
sion

D = fxxfyy − f 2
xy = 8− 16y − 64x2,

which at (0, 0) is 8, at (1/2, 1/2) is −16, and at (−1/2, 1/2) is also −16. Thus, at
the critical points (±1/2, 1/2), f has saddlepoints. At the point (0, 0), D > 0 and
so there is a local extremum. To find out whether its a maximum or a minimum
we have to look at the sign of fx,x(0, 0) = 4 > 0. Since this is > 0, the second
derivative test implies that f has a local minimum at (0, 0).

(4) Find the point on the plane 3x + 2y + z = 1 closest to the point (−1, 2, 1) (hint:
instead of minimizing the function describing the distance between a point on
the plane and (1,−2, 1), minimize a related function).

Solution: The distance from an arbitrary point (x, y, z) in R3 to (−1, 2, 1) is

d =
√

(x + 1)2 + (y − 2)2 + (z − 1)2.

To find where d is smallest, it suffices to find where

d2 = (x + 1)2 + (y − 2)2 + (z − 1)2

is smallest, since this will be the same point. This is much nicer to work with,
since it gets rid of the square root. We want to minimize a function of two
variables, which can be obtained by using the constraint that (x, y, z) lies on the
given plane. Thus, we can plug in −3x − 2y for z − 1 into d2 and so the point
we are looking for is where

f(x, y) = (x + 1)2 + (y − 2)2 + (−3x− 2y)2 = 10x2 + 12xy + 5y2 + 2x− 4y + 5

attains a global minimum. Geometrically, it is clear that there is a unique point
on the plane which is closest to the point (−1, 2, 1), and in some small closed
disk around this point shows that this point is on the interior of a compact region
and hence lies at a critical point. In other words, we will assume, hoping that



4 MA1132: ADVANCED CALCULUS, HILARY 2017

this is sufficient justification for our purposes, that this point is a local minimum
of f(x, y). We thus want to find the critical points of f(x, y). We compute

fx = 20x + 12y + 2,

fy = 10y + 12x− 4,

fxx = 20, fyy = 10, fxy = 12.

Note that at all points (x, y, z), D = fxxfyy − f 2
xy = 200 − 144 > 0 and that

fxx > 0, and that f(x, y) is differentiable everywhere. Thus, by the second
derivative test, we see that all critical points are local minima. To find these
points, we want to solve ∇f = 0, which gives the system of equations{

20x + 12y = −2,

12x + 10y = 4.

Solving this linear system gives x = −17/14, y = 13/7. Plugging back into the
equation of the plane gives z = 1 − 3x − 2y = 13/14. Thus, the point on the
plane which is closest to (−1, 2, 0) is (−17/14, 13/7, 13/14).

(5) Find the absolute minimum and maximum values (guaranteed to exist by the
Extreme Value Theorem) of the function

f(x, y) = x2y − 3xy + x3 + 7

on the triangular region (including the interior and the boundary) bounded by
the triangle with vertices at (0, 0), (2, 0), and (0,−1).
Solutions We first find the critical points inside of the triangle. We compute

fx = 2xy − 3y + 3x2,

fy = x2 − 3x,

fxx = 2y + 6x, fyy = 0, fxy = 2x− 3.

As this function is differentiable everywhere, critical points will occur when∇f =
0, i.e., when {

2xy + 3x2 − 3y = 0,

x2 − 3x = 0.

The solutions to the second equation are x = 0, 3, which by plugging back into
the first equation are seen to give rise to the critical points (0, 0) and (3,−9).
As the first point is already on the boundary of our triangle (and hence doesn’t
need to be considered separately from the analysis of the boundary case we will
do next anyways) and the point (3,−9) doesn’t lie within out triangle, the global
extrema for f in the closed triangular region lie on the boundary; i.e., on the
actual triangle.

The triangle consists of three pieces (the three sides). The first one is the set
of points (0, y) with −1 ≤ y ≤ 0. Call this set B1. The second is the set of points
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(x, 0) with 0 ≤ x ≤ 2. Call this set B2. The final side of the triangle is the line
segment from (2, 0) to (0,−1). The line through these two points has slope 1/2,
and can thus be written as y = x/2−1. That is, the last subset of the boundary,
B3, is the set of points (x, x/2− 1) with 0 ≤ x ≤ 2.

We now find the global extrema of f restricted to these three line segments.
We start with B1. Then we want the extrema of

g1(y) = f(0, y) = 7

on the interval [−1, 0]. Since this is constant, the global maximum value and
global minimum value on B1 are both given by 7.

We next move to B2. We want to find the extrema of

g2(x) = f(x, 0) = x3 + 7

on the interval [0, 2]. The critical points of g2 occur when g′2(x) = 3x2 + 7 =
0, which doesn’t hold for any real numbers. Thus, the global maximum and
minimum values of g2 on the interval are obtained at the endpoints. We then
have g2(0) = 7, g2(2) = 15. Hence, the minimum value of f on B2 is 7 and the
maximum value is 15.

Finally, we look at B3. We need to find the extrema of the function

g3(x) = f(x, x/2− 1) =
3x3

2
− 5x2

2
+ 3x + 7

on the interval [0, 2]. To find the critical points, compute g′3(x) = 9x2

2
− 5x + 3.

The discriminant of this quadratic is 25 − 18 · 3 < 0, and so g3 has no critical
points. Thus, it attains its global extrema at the endpoints of the interval. We
compute g3(0) = 7, and g3(0) = 15 (note that this isn’t really necessary, as these
endpoints already correspond with endpoints of the regions B1 and B2 which
were computed above). Thus, the global minimum value of f on B3 is 7, and the
maximum on B3 is 15.

Comparing all the values computed above, we see that the global minimum
value of f(x, y) on the triangular region is 7, and the global maximum value is
15.


