3 Unital abelian Banach algebras

3.1 Characters and maximal ideals

Let A be a unital abelian Banach algebra.

3.1.1 Definition. A *character* on A is a non-zero homomorphism $A \to \mathbb{C}$; that is, a non-zero linear map $\tau \colon A \to \mathbb{C}$ which satisfies $\tau(ab) = \tau(a)\tau(b)$ for $a, b \in A$. We write $\Omega(A)$ for the set of characters on A.

3.1.2 Example. Let A = C(X) where X is a compact topological space. For each $x \in X$, the map $\varepsilon_x \colon A \to \mathbb{C}$, $f \mapsto f(x)$ is a character on A.

3.1.3 Remark. This definition makes sense even if A is not abelian. However, $\Omega(A)$ is often not very interesting in that case.

For example, if $A = M_n(\mathbb{C})$ and n > 1 then $\Omega(A) = \emptyset$. Indeed, it is not hard to show that A is spanned by $\{ab - ba : a, b \in A\}$. If $\varphi : A \to \mathbb{C}$ is a homomorphism, then $\varphi(ab - ba) = \varphi(a)\varphi(b) - \varphi(b)\varphi(a) = 0$, so $\varphi = 0$ by linearity; hence $\Omega(A) = \emptyset$.

3.1.4 Lemma. If $\tau \in \Omega(A)$ then τ is continuous. More precisely,

$$\|\tau\| = \tau(1) = 1.$$

In particular, $\Omega(A)$ is a subset of the closed unit ball of A^* .

Proof. Observe that $\tau(1) = \tau(1^2) = \tau(1)^2$, so $\tau(1) \in \{0, 1\}$. If $\tau(1) = 0$ then $\tau(a) = \tau(a1) = \tau(a)\tau(1) = 0$ for any $a \in A$, so $\tau = 0$. But $\tau \in \Omega(A)$ so $\tau \neq 0$, which is a contradiction. So $\tau(1) = 1$.

We have $\tau(\operatorname{Inv} A) \subseteq \operatorname{Inv} \mathbb{C} = \mathbb{C} \setminus \{0\}$ by 1.5.12(i). For any $a \in A$ we have $\tau(\tau(a)1-a) = \tau(a)\tau(1) - \tau(a) = 0$, so $\tau(a)1-a \notin \operatorname{Inv} A$. Hence $\tau(a) \in \sigma(a)$, so $|\tau(a)| \leq ||a||$ by Theorem 1.3.5 and so $||\tau|| \leq 1$. Since $|\tau(1)| = 1$ we conclude that $||\tau|| = 1$.

Any $\tau \in \Omega(A)$ is a linear map $A \to \mathbb{C}$ by definition, and we have shown that it continuous with norm 1. Hence $\Omega(A)$ is contained in the closed unit ball of A^* .

3.1.5 Definition. The *Gelfand topology* on $\Omega(A)$ is the subspace topology obtained from the weak^{*} topology on A^* .

We will always equip $\Omega(A)$ with this topology.

3.1.6 Theorem. $\Omega(A)$ is a compact Hausdorff space.

Proof. We observed in Remark 2.4.2(iii) that the weak^{*} topology is Hausdorff, so $\Omega(A)$ is a Hausdorff space. By Lemma 3.1.4, $\Omega(A)$ is contained in the unit ball of A^* , which is compact in the weak^{*} topology by Theorem 2.4.3. A closed subset of a compact set is compact, so it suffices to show that $\Omega(A)$ is weak^{*} closed in A^* . But

$$\Omega(A) = \{ \tau \in A^* \colon \tau(1) = 1, \ \tau(ab) = \tau(a)\tau(b) \text{ for } a, b \in A \}$$

= $\{ \tau \in A^* \colon \tau(1) = 1 \} \cap \bigcap_{a,b \in A} \{ \tau \in A^* \colon \tau(ab) - \tau(a)\tau(b) = 0 \}$
= $J_1^{-1}(1) \cap \bigcap_{a,b \in A} (J_{ab} - J_a \cdot J_b)^{-1}(0).$

Each evaluation functional $J_a: A^* \to \mathbb{C}, \tau \mapsto \tau(a)$ is weak^{*} continuous, so the maps $J_{ab} - J_a \cdot J_b$ are also weak^{*} continuous. Hence the sets in this intersection are all weak^{*} closed, so $\Omega(A)$ is weak^{*} closed.

3.1.7 Lemma. Let A be a unital abelian Banach algebra.

- (i). If $\tau \in \Omega(A)$ then ker τ is a maximal ideal of A.
- (ii). If M is a maximal ideal of A, then the map $\mathbb{C} \to A/M$, $\lambda \mapsto \lambda 1 + M$ is an isometric isomorphism.

Proof. (i) Let $\tau \in \Omega(A)$. Since τ is a non-zero homomorphism, its kernel $I = \ker \tau$ is a proper ideal of A. Suppose that J is an ideal of A with $I \subsetneq J$ and let $a \in J \setminus I$. Then $\tau(a) \neq 0$, so $b = \tau(a)^{-1}a \in J$ and $\tau(b) = 1$. Since $\tau(1) = 1$ by Lemma 3.1.4, we have $1 - b \in I$, so $1 = b + 1 - b \in J$. By Lemma 1.5.5, J = A. This shows that I is not contained in any strictly larger proper ideal of A, so I is a maximal ideal of A.

(ii) Let M be a maximal ideal of A. By Theorems 1.5.6(ii) and 1.5.3, A/M is unital Banach algebra with unit 1 + M. If a + M is a non-zero element of A/M then $a \in A \setminus M$. Let $I = \{ab + m : m \in M, b \in A\}$. Since A is abelian and M is an ideal, it is easy to see that I is an ideal of A, and $M \subsetneq I$. Since M is a maximal ideal, I = A. So $1 \in I$, and ab + m = 1 for some $b \in A$ and $m \in M$. Now

$$(a+M)(b+M) = ab + M = ab + m + M = 1 + M,$$

which is the unit of A/M. Hence $b + M = (a + M)^{-1}$ and a + M is invertible in A/M. By the Gelfand-Mazur theorem 1.3.6, $A/M = \mathbb{C}1_{A/M} = \mathbb{C}(1 + M)$.

It is very easy to check that the map $\mathbb{C} \to A/M$, $\lambda \mapsto \lambda 1 + M$ is an isometric homomorphism, and we have just shown that it is surjective. Hence it is an isometric isomorphism.

3.1.8 Theorem. Let A be a unital abelian Banach algebra. The mapping

 $\tau \mapsto \ker \tau$

is a bijection from $\Omega(A)$ onto the set of maximal ideals of A.

Proof. If $\tau \in \Omega(A)$ then ker τ is a maximal ideal of A, by Lemma 3.1.7(i). Hence the mapping is well-defined.

The mapping $\tau \mapsto \ker \tau$ is injective, since if τ_1 and τ_2 are in $\Omega(A)$ with $\ker \tau_1 = \ker \tau_2$, then for any $a \in A$ we have $a - \tau_2(a) 1 \in \ker \tau_2 = \ker \tau_1$ so $\tau_1(a - \tau_2(a)1) = 0$, hence $\tau_1(a) = \tau_2(a)$; so $\tau_1 = \tau_2$.

We now show that the mapping is surjective. Let M be a maximal ideal of A, and let $q: A \to A/M$, $a \mapsto a + M$ be the corresponding quotient map. Observe that q is a homomorphism and ker q = M. By Lemma 3.1.7(ii), the map $\theta: \mathbb{C} \to A/M$, $\lambda \mapsto \lambda 1 + M$ is an isomorphism. Let $\tau = \theta^{-1} \circ q: A \to \mathbb{C}$. Since τ is the composition of two homomorphisms, it is a homomorphism, and $\tau(1) = \theta^{-1}(q(1)) = \theta^{-1}(1+M) = 1$, so $\tau \neq 0$. Hence $\tau \in \Omega(A)$. Since θ is an isomorphism, we have ker $\tau = \ker q = M$.

This shows that $\tau \mapsto \ker \tau$ is a bijection from $\Omega(A)$ onto the set of all maximal ideals of A.

3.1.9 Examples. (i). Let X be a compact Hausdorff space. For $x \in X$, the map $\varepsilon_x \colon C(X) \to \mathbb{C}$, $f \mapsto f(x)$ is a nonzero homomorphism, so $\{\varepsilon_x \colon x \in X\} \subseteq \Omega(C(X))$. We claim that we have equality.

For $x \in X$, let $M_x = \ker \varepsilon_x = \{f \in C(X) : f(x) = 0\}$, which is a maximal ideal of C(X) by Theorem 3.1.8. Let I be an ideal of C(X). If $I \not\subseteq M_x$ for every $x \in X$, then for each $x \in X$, there is $f_x \in I$ with $f_x \neq 0$. Since I is an ideal, $g_x = |f_x|^2 = \overline{f_x}f_x \in I$, and since g_x is continuous and non-negative with $g_x(x) > 0$, there is an open set U_x with $x \in U_x$ and $g_x(y) > 0$ for all $y \in U_x$. As x varies over X, the open sets U_x cover X. Since X is compact, there is $n \ge 1$ and $x_1, \ldots, x_n \in X$ such that U_{x_1}, \ldots, U_{x_n} cover X. Let $g = g_{x_1} + \cdots + g_{x_n}$. Then $g \in I$ and g(x) > 0 for all $x \in X$, so g is invertible in C(X). Hence I = C(X).

This shows that every proper ideal I of C(X) is contained in M_x for some $x \in X$. Let $\tau \in \Omega(C(X))$. Since ker τ is a maximal (proper) ideal, we must have ker $\tau = M_x$ for some $x \in X$, so $\tau = \varepsilon_x$ by Theorem 3.1.8. Consider the map $\theta \colon X \to \Omega(C(X)), x \mapsto \varepsilon_x$. We have just shown that this is surjective. Since X is compact and Hausdorff, C(X) separates the points of X by Urysohn's lemma. Hence if $\varepsilon_x = \varepsilon_y$ then f(x) = f(y)for all $f \in C(X)$, so x = y. Hence θ is a bijection. We claim that θ is a homeomorphism. Indeed, θ is continuous since for $f \in C(X)$ and $x \in X$ we have

$$J_f(\theta(x)) = J_f(\varepsilon_x) = \varepsilon_x(f) = f(x),$$

so $J_f \circ \theta$ (or, more precisely, $J_f|_{\Omega(C(X))} \circ \theta$) is continuous $X \to \mathbb{C}$ for every $f \in C(X)$. By Proposition 2.2.6, θ is continuous. Since X is compact and $\Omega(C(X))$ is Hausdorff, Lemma 2.1.1 shows that θ is a homeomorphism.

(ii). Recall that $A(\overline{\mathbb{D}})$ denotes the disc algebra. If $w \in \mathbb{D}$ then $\varepsilon_w : A(\overline{\mathbb{D}}) \to \mathbb{C}$, $f \mapsto f(w)$ is a character on $A(\overline{\mathbb{D}})$.

Again, we claim that every character arises in this way. To see this, consider the function $z \in A(\overline{\mathbb{D}})$ defined by $z(w) = w, w \in \overline{\mathbb{D}}$. If $\tau \in \Omega(A(\overline{\mathbb{D}}))$ then $\tau(1) = 1$ and $|\tau(z)| \leq ||z|| = 1$, so $\tau(z) \in \overline{\mathbb{D}}$. It is not hard to show that the polynomials $\mathbb{D} \to \mathbb{C}$ form a dense unital subalgebra of $A(\overline{\mathbb{D}})$. If $p: \mathbb{D} \to \mathbb{C}$ is a polynomial then $p = \lambda_0 1 + \lambda_1 z + \cdots + \lambda_n z^n$ for constants λ_i , so $\tau(p) = \lambda_0 + \lambda_1 \tau(z) + \cdots + \lambda_n \tau(z)^n = p(\tau(z))$. Since the polynomials are dense in $A(\overline{\mathbb{D}})$, this shows that $\tau(f) = f(\tau(z))$ for all $f \in A(\overline{\mathbb{D}})$, so $\tau = \varepsilon_{\tau(z)}$. Hence $\Omega(A(\overline{\mathbb{D}})) = \{\varepsilon_w : w \in \overline{\mathbb{D}}\}$. Just as in (i), it is easy to see that the map $w \mapsto \varepsilon_w$ is a homeomorphism $\overline{\mathbb{D}} \to \Omega(A(\overline{\mathbb{D}}))$.

(iii). Recall the abelian Banach algebra $\ell^1(\mathbb{Z})$ with product * from Example 1.1.3(v). For $n \in \mathbb{Z}$, let $e_n = (\delta_{mn})_{m \in \mathbb{Z}}$. Then $e_n \in \ell^1(\mathbb{Z})$, and the linear span of $\{e_n : n \in \mathbb{Z}\}$ is dense in $\ell^1(\mathbb{Z})$. Moreover, it is easy to check that $e_n * e_m = e_{n+m}$ for $n, m \in \mathbb{Z}$. In particular, $e_0 * e_m = e_m$, hence e_0 is the unit for $\ell^1(\mathbb{Z})$.

If $\tau \in \Omega(\ell^1(\mathbb{Z}))$ then $\tau(e_0) = 1$. Moreover, $e_n * e_{-n} = e_0$ so $e_n = (e_{-n})^{-1}$ and $|\tau(e_n)| \leq ||e_n|| = 1$ for each $n \in \mathbb{Z}$, so

$$1 \le |\tau(e_{-n})|^{-1} = |\tau((e_{-n})^{-1})| = |\tau(e_n)| \le 1.$$

So we have equality. In particular, $|\tau(e_1)| = 1$, so $\tau(e_1) \in \mathbb{T}$. Since $e_n = e_1^n$, we have $\tau(e_n) = \tau(e_1)^n$. Hence if $x \in \ell^1(\mathbb{Z})$ then

$$\tau(x) = \tau\left(\sum_{n \in \mathbb{Z}} x_n e_n\right) = \sum_{n \in \mathbb{Z}} x_n \tau(e_1)^n.$$

So τ is determined by the complex number $\tau(e_1) \in \mathbb{T}$. Conversely, given any $z \in \mathbb{T}$, there is a character $\tau_z \in \Omega(\ell^1(\mathbb{Z}))$ with $\tau_z(e_1) = z$. Indeed, let $A_0 = \operatorname{span}\{e_n : n \in \mathbb{Z}\}$, which is a dense subalgebra of $\ell^1(\mathbb{Z})$. Let $\tau_0: A_0 \to \mathbb{C}$ be the unique linear map such that $\tau_0(e_n) = z^n$ for all $n \in \mathbb{Z}$. If $x, y \in A_0$, then

$$\tau_0(x*y) = \tau_0 \left(\sum_{m,n\in\mathbb{Z}} x_m y_{n-m} e_n\right) = \sum_{m,n\in\mathbb{Z}} x_m y_{n-m} z^n$$
$$= \sum_{m,n\in\mathbb{Z}} x_m z^m y_{n-m} z^{n-m} = \tau_0(x) \tau_0(y),$$

so τ_0 is a homomorphism, and

$$|\tau_0(x)| = \left|\sum_{n \in \mathbb{Z}} x_n z^n\right| \le \sum_{n \in \mathbb{Z}} |x_n| = ||x||,$$

so τ_0 is continuous. Hence τ_0 extends to a continuous linear homomorphism $\tau_z \colon \ell^1(\mathbb{Z}) \to \mathbb{C}$, which is a character on $\ell^1(\mathbb{Z})$. Clearly, $\tau_z(e_1) = z$. This shows that the map $\theta \colon \mathbb{T} \to \Omega(\ell^1(\mathbb{Z})), z \mapsto \tau_z$ is a bijection. We claim that θ is a homeomorphism. Indeed, θ is continuous since for $x \in \ell^1(\mathbb{Z})$ and $z \in \mathbb{T}$ we have

$$J_x(\theta(z)) = J_x(\tau_z) = \tau_z(x) = \sum_{n \in \mathbb{Z}} x_n z^n.$$

Since $x \in \ell^1(\mathbb{Z})$, this series converges absolutely (for $z \in \mathbb{T}$). The partial sums of the series are continuous functions $\mathbb{T} \to \mathbb{C}$, so $z \mapsto J_x(\theta(z))$ is continuous $\mathbb{T} \to \mathbb{C}$. By Proposition 2.2.6, θ is continuous. Since \mathbb{T} is compact and $\Omega(\ell^1(\mathbb{Z}))$ is Hausdorff, Lemma 2.1.1 shows that θ is a homeomorphism.

The next lemma is purely algebraic.

3.1.10 Lemma. Let A be a unital abelian Banach algebra and let $a \in A$. The following are equivalent:

- (i). $a \notin \operatorname{Inv} A$;
- (ii). $a \in I$ for some proper ideal I of A;
- (iii). $a \in M$ for some maximal ideal M of A.

Proof. (i) \implies (ii): If $a \notin \text{Inv } A$, consider the set $I = \{ab : b \in A\}$. Since A is abelian, this is an ideal of A, and since A is unital we have $a = a1 \in I$. If $1 \in I$ then ab = 1 for some $b \in A$, so $a \in \text{Inv } A$, a contradiction. So $1 \notin I$ and I is a proper ideal.

(ii) \implies (iii): Suppose that $a \in I$ where I is a proper ideal of A. By Remark 1.5.7(ii), $I \subseteq M$ for some maximal ideal M of A; so $a \in M$.

(iii) \implies (i): If M is a maximal ideal of A then M is a proper ideal, so $M \cap \text{Inv } A = \emptyset$ by Lemma 1.5.5. Hence $a \notin \text{Inv } A$ for every $a \in M$.

3.1.11 Corollary. Let A be a unital abelian Banach algebra and let $a \in A$.

- (i). $a \in \text{Inv } A \text{ if and only if } \tau(a) \neq 0 \text{ for all } \tau \in \Omega(A).$
- (*ii*). $\sigma(a) = \{\tau(a) \colon \tau \in \Omega(A)\}.$
- (iii). $r(a) = \sup_{\tau \in \Omega(A)} |\tau(a)|.$

Proof. (i) We have:

- $a \in \text{Inv} A \iff a \notin M$ for all maximal ideals M of A, by Lemma 3.1.10 $\iff a \notin \ker \tau$ for all $\tau \in \Omega(A)$, by Theorem 3.1.8 $\iff \tau(a) \neq 0$ for all $\tau \in \Omega(A)$.
 - (ii) This follows from the equivalences:

$$\lambda \in \sigma(a) \iff \lambda - a \notin \operatorname{Inv} A$$
$$\iff \tau(\lambda - a) = 0 \text{ for some } \tau \in \Omega(A), \text{ by (i)}$$
$$\iff \lambda = \tau(a) \text{ for some } \tau \in \Omega(A), \text{ since } \tau(\lambda) = \lambda \text{ by Lemma 3.1.4.}$$

(iii) follows immediately from (ii) and the definition of r(a).

3.2 The Gelfand representation

3.2.1 Definition. Let A be a unital abelian Banach algebra. For $a \in A$, the *Gelfand transform of a* is the mapping

$$\widehat{a}: \Omega(A) \to \mathbb{C}, \quad \tau \mapsto \tau(a).$$

In other words, $\hat{a} = J_a|_{\Omega(A)}$.

3.2.2 Examples. (i). Let X be a compact Hausdorff space. We have seen that the map $X \to \Omega(C(X)), x \mapsto \varepsilon_x$ is a homeomorphism. If $f \in C(X)$ then

$$\widehat{f}: \Omega(C(X)) \to \mathbb{C}, \quad \varepsilon_x \mapsto \varepsilon_x(f) = f(x).$$

This means that, if we identify $\Omega(C(X))$ with X by pretending that $x = \varepsilon_x$, then $\hat{f} = f$.

(ii). We have seen that $\Omega(\ell^1(\mathbb{Z}))$ can be identified with \mathbb{T} , by pretending that $z \in \mathbb{T}$ is the same as the character $\tau_z \colon \ell^1(\mathbb{Z}) \to \mathbb{C}, x \mapsto \sum_{n \in \mathbb{Z}} x_n z^n$. Hence for $x \in \ell^1(\mathbb{Z})$, we have

$$\widehat{x} \colon \Omega(\ell^1(\mathbb{Z})) \to \mathbb{C}, \quad \tau_z \mapsto \tau_z(x) = \sum_{n \in \mathbb{Z}} x_n z^n.$$

If we write $z = e^{i\theta}$ and $x_n = x(n)$ then this takes the form

$$\widehat{x}(e^{i\theta}) = \sum_{n \in \mathbb{Z}} x(n) e^{in\theta},$$

so \hat{x} maybe viewed as the inverse Fourier transform of x.

3.2.3 Theorem. Let A be a unital abelian Banach algebra. For each $a \in A$, the Gelfand transform \hat{a} is in $C(\Omega(A))$. Moreover, the mapping

$$\gamma \colon A \to C(\Omega(A)), \quad a \mapsto \widehat{a}$$

is a unital, norm-decreasing (and hence continuous) homomorphism, and for each $a \in A$ we have

$$\sigma_A(a) = \sigma_{C(\Omega(A))}(\widehat{a}) = \{\widehat{a}(\tau) \colon \tau \in \Omega(A)\} \quad and \quad r(a) = \|\widehat{a}\|.$$

Proof. By the definition of the topology on $\Omega(A)$, each \hat{a} is in $C(\Omega(A))$. It is easy to see that γ is a homomorphism, and it is unital by Lemma 3.1.4. The identification of $\sigma_A(a)$ with $\sigma_{C(\Omega(A))}(\hat{a})$ follows from Corollary 3.1.11(ii) and Example 1.3.2(ii). Now $r(a) = \|\hat{a}\| \leq \|a\|$ by Corollary 3.1.11(iii) and Remark 1.3.10, so γ is linear and norm-decreasing, hence continuous. \Box

3.2.4 Definition. If A is a unital abelian Banach algebra then the unital homomorphism $\gamma: A \to C(\Omega(A)), a \mapsto \hat{a}$ is called the *Gelfand representation* of A.

3.2.5 Remark. In general, the Gelfand representation is neither injective nor surjective. For example, the Gelfand representation of the disc algebra is the inclusion $A(\overline{\mathbb{D}}) \to C(\overline{\mathbb{D}})$ which is not surjective.