
3 Unital abelian Banach algebras

3.1 Characters and maximal ideals

Let A be a unital abelian Banach algebra.

3.1.1 Definition. A character on A is a non-zero homomorphism A → C;
that is, a non-zero linear map τ : A→ C which satisfies τ(ab) = τ(a)τ(b) for
a, b ∈ A. We write Ω(A) for the set of characters on A.

3.1.2 Example. Let A = C(X) where X is a compact topological space.
For each x ∈ X, the map εx : A→ C, f 7→ f(x) is a character on A.

3.1.3 Remark. This definition makes sense even if A is not abelian. How-
ever, Ω(A) is often not very interesting in that case.

For example, if A = Mn(C) and n > 1 then Ω(A) = ∅. Indeed, it is not
hard to show that A is spanned by {ab − ba : a, b ∈ A}. If ϕ : A → C is a
homomorphism, then ϕ(ab − ba) = ϕ(a)ϕ(b) − ϕ(b)ϕ(a) = 0, so ϕ = 0 by
linearity; hence Ω(A) = ∅.

3.1.4 Lemma. If τ ∈ Ω(A) then τ is continuous. More precisely,

‖τ‖ = τ(1) = 1.

In particular, Ω(A) is a subset of the closed unit ball of A∗.

Proof. Observe that τ(1) = τ(12) = τ(1)2, so τ(1) ∈ {0, 1}. If τ(1) = 0 then
τ(a) = τ(a1) = τ(a)τ(1) = 0 for any a ∈ A, so τ = 0. But τ ∈ Ω(A) so
τ 6= 0, which is a contradiction. So τ(1) = 1.

We have τ(InvA) ⊆ Inv C = C \ {0} by 1.5.12(i). For any a ∈ A we have
τ(τ(a)1−a) = τ(a)τ(1)−τ(a) = 0, so τ(a)1−a 6∈ InvA. Hence τ(a) ∈ σ(a),
so |τ(a)| ≤ ‖a‖ by Theorem 1.3.5 and so ‖τ‖ ≤ 1. Since |τ(1)| = 1 we
conclude that ‖τ‖ = 1.

Any τ ∈ Ω(A) is a linear map A → C by definition, and we have shown
that it continuous with norm 1. Hence Ω(A) is contained in the closed unit
ball of A∗.

3.1.5 Definition. The Gelfand topology on Ω(A) is the subspace topology
obtained from the weak* topology on A∗.

We will always equip Ω(A) with this topology.
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3.1.6 Theorem. Ω(A) is a compact Hausdorff space.

Proof. We observed in Remark 2.4.2(iii) that the weak* topology is Haus-
dorff, so Ω(A) is a Hausdorff space. By Lemma 3.1.4, Ω(A) is contained in the
unit ball of A∗, which is compact in the weak* topology by Theorem 2.4.3.
A closed subset of a compact set is compact, so it suffices to show that Ω(A)
is weak* closed in A∗. But

Ω(A) = {τ ∈ A∗ : τ(1) = 1, τ(ab) = τ(a)τ(b) for a, b ∈ A}
= {τ ∈ A∗ : τ(1) = 1} ∩

⋂

a,b∈A

{τ ∈ A∗ : τ(ab) − τ(a)τ(b) = 0}

= J−1
1 (1) ∩

⋂

a,b∈A

(Jab − Ja · Jb)
−1(0).

Each evaluation functional Ja : A∗ → C, τ 7→ τ(a) is weak* continuous, so
the maps Jab − Ja · Jb are also weak* continuous. Hence the sets in this
intersection are all weak* closed, so Ω(A) is weak* closed.

3.1.7 Lemma. Let A be a unital abelian Banach algebra.

(i). If τ ∈ Ω(A) then ker τ is a maximal ideal of A.

(ii). If M is a maximal ideal of A, then the map C → A/M , λ 7→ λ1 +M
is an isometric isomorphism.

Proof. (i) Let τ ∈ Ω(A). Since τ is a non-zero homomorphism, its kernel
I = ker τ is a proper ideal of A. Suppose that J is an ideal of A with I ( J
and let a ∈ J \ I. Then τ(a) 6= 0, so b = τ(a)−1a ∈ J and τ(b) = 1. Since
τ(1) = 1 by Lemma 3.1.4, we have 1 − b ∈ I, so 1 = b + 1 − b ∈ J . By
Lemma 1.5.5, J = A. This shows that I is not contained in any strictly
larger proper ideal of A, so I is a maximal ideal of A.

(ii) Let M be a maximal ideal of A. By Theorems 1.5.6(ii) and 1.5.3,
A/M is unital Banach algebra with unit 1 + M . If a + M is a non-zero
element of A/M then a ∈ A \M . Let I = {ab +m : m ∈ M, b ∈ A}. Since
A is abelian and M is an ideal, it is easy to see that I is an ideal of A, and
M ( I. Since M is a maximal ideal, I = A. So 1 ∈ I, and ab + m = 1 for
some b ∈ A and m ∈M . Now

(a+M)(b+M) = ab+M = ab+m+M = 1 +M,

which is the unit of A/M . Hence b+M = (a+M)−1 and a+M is invertible
in A/M . By the Gelfand-Mazur theorem 1.3.6, A/M = C1A/M = C(1 +M).

It is very easy to check that the map C → A/M , λ 7→ λ1 + M is an
isometric homomorphism, and we have just shown that it is surjective. Hence
it is an isometric isomorphism.
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3.1.8 Theorem. Let A be a unital abelian Banach algebra. The mapping

τ 7→ ker τ

is a bijection from Ω(A) onto the set of maximal ideals of A.

Proof. If τ ∈ Ω(A) then ker τ is a maximal ideal of A, by Lemma 3.1.7(i).
Hence the mapping is well-defined.

The mapping τ 7→ ker τ is injective, since if τ1 and τ2 are in Ω(A) with
ker τ1 = ker τ2, then for any a ∈ A we have a − τ2(a)1 ∈ ker τ2 = ker τ1 so
τ1(a− τ2(a)1) = 0, hence τ1(a) = τ2(a); so τ1 = τ2.

We now show that the mapping is surjective. Let M be a maximal ideal
of A, and let q : A→ A/M , a 7→ a+M be the corresponding quotient map.
Observe that q is a homomorphism and ker q = M . By Lemma 3.1.7(ii), the
map θ : C → A/M , λ 7→ λ1+M is an isomorphism. Let τ = θ−1 ◦q : A→ C.
Since τ is the composition of two homomorphisms, it is a homomorphism,
and τ(1) = θ−1(q(1)) = θ−1(1 +M) = 1, so τ 6= 0. Hence τ ∈ Ω(A). Since θ
is an isomorphism, we have ker τ = ker q = M .

This shows that τ 7→ ker τ is a bijection from Ω(A) onto the set of all
maximal ideals of A.

3.1.9 Examples. (i). Let X be a compact Hausdorff space. For x ∈ X,
the map εx : C(X) → C, f 7→ f(x) is a nonzero homomorphism, so
{εx : x ∈ X} ⊆ Ω(C(X)). We claim that we have equality.

For x ∈ X, let Mx = ker εx = {f ∈ C(X) : f(x) = 0}, which is a
maximal ideal of C(X) by Theorem 3.1.8. Let I be an ideal of C(X).
If I 6⊆ Mx for every x ∈ X, then for each x ∈ X, there is fx ∈ I with
fx 6= 0. Since I is an ideal, gx = |fx|2 = fxfx ∈ I, and since gx is
continuous and non-negative with gx(x) > 0, there is an open set Ux

with x ∈ Ux and gx(y) > 0 for all y ∈ Ux. As x varies over X, the open
sets Ux cover X. Since X is compact, there is n ≥ 1 and x1, . . . , xn ∈ X
such that Ux1

, . . . , Uxn
cover X. Let g = gx1

+ · · ·+gxn
. Then g ∈ I and

g(x) > 0 for all x ∈ X, so g is invertible in C(X). Hence I = C(X).

This shows that every proper ideal I of C(X) is contained in Mx for
some x ∈ X. Let τ ∈ Ω(C(X)). Since ker τ is a maximal (proper) ideal,
we must have ker τ = Mx for some x ∈ X, so τ = εx by Theorem 3.1.8.

Consider the map θ : X → Ω(C(X)), x 7→ εx. We have just shown that
this is surjective. Since X is compact and Hausdorff, C(X) separates
the points ofX by Urysohn’s lemma. Hence if εx = εy then f(x) = f(y)
for all f ∈ C(X), so x = y. Hence θ is a bijection.
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We claim that θ is a homeomorphism. Indeed, θ is continuous since for
f ∈ C(X) and x ∈ X we have

Jf (θ(x)) = Jf (εx) = εx(f) = f(x),

so Jf ◦ θ (or, more precisely, Jf |Ω(C(X)) ◦ θ) is continuous X → C for
every f ∈ C(X). By Proposition 2.2.6, θ is continuous. Since X is
compact and Ω(C(X)) is Hausdorff, Lemma 2.1.1 shows that θ is a
homeomorphism.

(ii). Recall that A(D) denotes the disc algebra. If w ∈ D then εw : A(D) →
C, f 7→ f(w) is a character on A(D).

Again, we claim that every character arises in this way. To see this,
consider the function z ∈ A(D) defined by z(w) = w, w ∈ D. If
τ ∈ Ω(A(D)) then τ(1) = 1 and |τ(z)| ≤ ‖z‖ = 1, so τ(z) ∈ D.
It is not hard to show that the polynomials D → C form a dense
unital subalgebra of A(D). If p : D → C is a polynomial then p =
λ01 + λ1z + · · · + λnz

n for constants λi, so τ(p) = λ0 + λ1τ(z) + · · · +
λnτ(z)

n = p(τ(z)). Since the polynomials are dense in A(D), this
shows that τ(f) = f(τ(z)) for all f ∈ A(D), so τ = ετ(z). Hence

Ω(A(D)) = {εw : w ∈ D}. Just as in (i), it is easy to see that the map
w 7→ εw is a homeomorphism D → Ω(A(D)).

(iii). Recall the abelian Banach algebra ℓ1(Z) with product ∗ from Exam-
ple 1.1.3(v). For n ∈ Z, let en = (δmn)m∈Z. Then en ∈ ℓ1(Z), and the
linear span of {en : n ∈ Z} is dense in ℓ1(Z). Moreover, it is easy to
check that en ∗ em = en+m for n,m ∈ Z. In particular, e0 ∗ em = em,
hence e0 is the unit for ℓ1(Z).

If τ ∈ Ω(ℓ1(Z)) then τ(e0) = 1. Moreover, en∗e−n = e0 so en = (e−n)−1

and |τ(en)| ≤ ‖en‖ = 1 for each n ∈ Z, so

1 ≤ |τ(e−n)|−1 = |τ((e−n)−1)| = |τ(en)| ≤ 1.

So we have equality. In particular, |τ(e1)| = 1, so τ(e1) ∈ T. Since
en = en

1 , we have τ(en) = τ(e1)
n. Hence if x ∈ ℓ1(Z) then

τ(x) = τ

( ∑

n∈Z

xnen

)
=

∑

n∈Z

xnτ(e1)
n.

So τ is determined by the complex number τ(e1) ∈ T. Conversely, given
any z ∈ T, there is a character τz ∈ Ω(ℓ1(Z)) with τz(e1) = z. Indeed,
let A0 = span{en : n ∈ Z}, which is a dense subalgebra of ℓ1(Z). Let
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τ0 : A0 → C be the unique linear map such that τ0(en) = zn for all
n ∈ Z. If x, y ∈ A0, then

τ0(x ∗ y) = τ0

( ∑

m,n∈Z

xmyn−men

)
=

∑

m,n∈Z

xmyn−mz
n

=
∑

m,n∈Z

xmz
m yn−mz

n−m = τ0(x)τ0(y),

so τ0 is a homomorphism, and

|τ0(x)| =
∣∣∣
∑

n∈Z

xnz
n
∣∣∣ ≤

∑

n∈Z

|xn| = ‖x‖,

so τ0 is continuous. Hence τ0 extends to a continuous linear homomor-
phism τz : ℓ1(Z) → C, which is a character on ℓ1(Z). Clearly, τz(e1) = z.

This shows that the map θ : T → Ω(ℓ1(Z)), z 7→ τz is a bijection. We
claim that θ is a homeomorphism. Indeed, θ is continuous since for
x ∈ ℓ1(Z) and z ∈ T we have

Jx(θ(z)) = Jx(τz) = τz(x) =
∑

n∈Z

xnz
n.

Since x ∈ ℓ1(Z), this series converges absolutely (for z ∈ T). The partial
sums of the series are continuous functions T → C, so z 7→ Jx(θ(z))
is continuous T → C. By Proposition 2.2.6, θ is continuous. Since T

is compact and Ω(ℓ1(Z)) is Hausdorff, Lemma 2.1.1 shows that θ is a
homeomorphism.

The next lemma is purely algebraic.

3.1.10 Lemma. Let A be a unital abelian Banach algebra and let a ∈ A.
The following are equivalent:

(i). a 6∈ InvA;

(ii). a ∈ I for some proper ideal I of A;

(iii). a ∈M for some maximal ideal M of A.

Proof. (i) =⇒ (ii): If a 6∈ InvA, consider the set I = {ab : b ∈ A}. Since A
is abelian, this is an ideal of A, and since A is unital we have a = a1 ∈ I. If
1 ∈ I then ab = 1 for some b ∈ A, so a ∈ InvA, a contradiction. So 1 6∈ I
and I is a proper ideal.

(ii) =⇒ (iii): Suppose that a ∈ I where I is a proper ideal of A. By
Remark 1.5.7(ii), I ⊆M for some maximal ideal M of A; so a ∈M .

(iii) =⇒ (i): If M is a maximal ideal of A then M is a proper ideal, so
M ∩ InvA = ∅ by Lemma 1.5.5. Hence a 6∈ InvA for every a ∈M .
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3.1.11 Corollary. Let A be a unital abelian Banach algebra and let a ∈ A.

(i). a ∈ InvA if and only if τ(a) 6= 0 for all τ ∈ Ω(A).

(ii). σ(a) = {τ(a) : τ ∈ Ω(A)}.
(iii). r(a) = sup

τ∈Ω(A)

|τ(a)|.

Proof. (i) We have:

a ∈ InvA ⇐⇒ a 6∈M for all maximal ideals M of A, by Lemma 3.1.10

⇐⇒ a 6∈ ker τ for all τ ∈ Ω(A), by Theorem 3.1.8

⇐⇒ τ(a) 6= 0 for all τ ∈ Ω(A).

(ii) This follows from the equivalences:

λ ∈ σ(a) ⇐⇒ λ− a 6∈ InvA

⇐⇒ τ(λ− a) = 0 for some τ ∈ Ω(A), by (i)

⇐⇒ λ = τ(a) for some τ ∈ Ω(A), since τ(λ) = λ by Lemma 3.1.4.

(iii) follows immediately from (ii) and the definition of r(a).

3.2 The Gelfand representation

3.2.1 Definition. Let A be a unital abelian Banach algebra. For a ∈ A, the
Gelfand transform of a is the mapping

â : Ω(A) → C, τ 7→ τ(a).

In other words, â = Ja|Ω(A).

3.2.2 Examples. (i). Let X be a compact Hausdorff space. We have seen
that the map X → Ω(C(X)), x 7→ εx is a homeomorphism. If f ∈
C(X) then

f̂ : Ω(C(X)) → C, εx 7→ εx(f) = f(x).

This means that, if we identify Ω(C(X)) with X by pretending that

x = εx, then f̂ = f .

(ii). We have seen that Ω(ℓ1(Z)) can be identified with T, by pretending that
z ∈ T is the same as the character τz : ℓ1(Z) → C, x 7→ ∑

n∈Z
xnz

n.
Hence for x ∈ ℓ1(Z), we have

x̂ : Ω(ℓ1(Z)) → C, τz 7→ τz(x) =
∑

n∈Z

xnz
n.
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If we write z = eiθ and xn = x(n) then this takes the form

x̂(eiθ) =
∑

n∈Z

x(n)einθ,

so x̂ maybe viewed as the inverse Fourier transform of x.

3.2.3 Theorem. Let A be a unital abelian Banach algebra. For each a ∈ A,
the Gelfand transform â is in C(Ω(A)). Moreover, the mapping

γ : A→ C(Ω(A)), a 7→ â

is a unital, norm-decreasing (and hence continuous) homomorphism, and for
each a ∈ A we have

σA(a) = σC(Ω(A))(â) = {â(τ) : τ ∈ Ω(A)} and r(a) = ‖â‖.

Proof. By the definition of the topology on Ω(A), each â is in C(Ω(A)). It
is easy to see that γ is a homomorphism, and it is unital by Lemma 3.1.4.
The identification of σA(a) with σC(Ω(A))(â) follows from Corollary 3.1.11(ii)
and Example 1.3.2(ii). Now r(a) = ‖â‖ ≤ ‖a‖ by Corollary 3.1.11(iii) and
Remark 1.3.10, so γ is linear and norm-decreasing, hence continuous.

3.2.4 Definition. If A is a unital abelian Banach algebra then the unital
homomorphism γ : A→ C(Ω(A)), a 7→ â is called the Gelfand representation
of A.

3.2.5 Remark. In general, the Gelfand representation is neither injective
nor surjective. For example, the Gelfand representation of the disc algebra
is the inclusion A(D) → C(D) which is not surjective.
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