
2 A topological interlude

2.1 Topological spaces

Recall that a topological space is a set X with a topology: a collection T of
subsets of X, known as open sets, such that ∅ and X are open, and finite
intersections and arbitrary unions of open sets are open. We call a set F ⊆ X
closed if its complement X \ F is open.

An open cover C of X is a collection of open subsets of X whose union
is X. A finite subcover of C is a finite subcollection whose union still con-
tains X. To say that X is compact means that every open cover of X has a
finite subcover. Similarly, if Z ⊆ X then an open cover C of Z is a collection
of open subsets whose union contains Z. We say that Z is compact if every
open cover of Z has a finite subcover. If X is compact, then it is easy to
show that any closed subset of X is also compact.

A topological space Y is Hausdorff if, for any two distinct points y1, y2

in Y , there are disjoint open sets G1, G2 ⊆ Y with y1 ∈ G1 and y2 ∈ G2. It
is not hard to show that any compact subset of a Hausdorff space is closed.

If X and Y are topological spaces then a map θ : X → Y is continuous if,
for all open sets G ⊆ Y , the set θ−1(G) is open in X. Taking complements,
we see that θ is continuous if and only if, for all closed K ⊆ Y , the set θ−1(K)
is closed in X. If Z is a compact subset of X and θ : X → Y is continuous,
then θ(Z) is compact.

A homeomorphism from X to Y is a bijection X → Y which is continuous
and has a continuous inverse. If there is a homeomorphism from X to Y ,
we say that X and Y are homeomorphic. If X and Y are homeomorphic
topological spaces then all of their topological properties are identical. In
particular, X is compact if and only if Y is compact.

Recall that if X is a topological space and Z ⊆ X, then the subspace
topology on Z is defined by declaring the open sets of Z to be the sets G∩Z
for G an open set of X. Then Z is a compact subset of X if and only if Z is
a compact topological space (in the subspace topology). Also, it is easy to
see that a subspace of a Hausdorff space is Hausdorff.

2.1.1 Lemma. Let X and Y be topological spaces, and suppose that X is
compact and Y is Hausdorff.

(i). If θ : X → Y is a continuous bijection, then θ is a homeomorphism
onto Y . In particular, Y is compact.

(ii). If θ : X → Y is a continuous injection, then θ(X) (with the subspace
topology from Y ) is homeomorphic to X. In particular, θ(X) is a
compact subset of Y .
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Proof. (i) Let K be a closed subset of X. Since X is compact, K is compact.
Since θ is continuous, θ(K) is compact. A compact subset of a Hausdorff
space is closed, so θ(K) is closed. Hence θ−1 is continuous, which shows that
θ is a homeomorphism. So Y is homeomorphic to the compact space X; so
Y is compact.

(ii) The subspace θ(X) of the Hausdorff space Y is Hausdorff. Let

θ̃ : X → θ(X), x 7→ θ(x), which is a continuous bijection. By (i), θ̃ is a
homeomorphism and θ(X) is compact.

2.2 Subbases and weak topologies

2.2.1 Definition. If T1 and T2 are two topologies on a set X then we say
that T1 is weaker than T2 if T1 ⊆ T2.
[We might also say that T1 is smaller, or coarser than T2].

2.2.2 Definition. Let (X, T ) be a topological space. We say that a collection
of open sets S ⊆ T is a subbase for T if T is the weakest topology containing
S. If the topology T is understood, we will also say that S is a subbase for
the topological space X.

2.2.3 Remark. Suppose that T is a topology on X and S ⊆ T . It is not
hard to see that the collection of unions of finite intersections of sets in S
forms a topology on X which is no larger than T . [The empty set is the
union of zero sets, and X is the intersection of zero sets, so ∅ and X are
in this collection.] From this, it follows that that following conditions are
equivalent:

(i). S is a subbase for T ;

(ii). every set in T is a union of finite intersections of sets in S;

(iii). a set G ⊆ X is in T if and only if for every x ∈ G, there exist finitely
many sets S1, S2, . . . , Sn ∈ S such that

x ∈ S1 ∩ S2 ∩ · · · ∩ Sn ⊆ G.

By the equivalence of (i) and (ii), if X,Y are topological spaces and S is
a subbase for X, then a map f : Y → X is continuous if and only if f−1(S)
is open for all S ∈ S.
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2.2.4 Proposition. Let X be a set, let I be an index set and suppose that
Xi is a topological space and fi : X → Xi for each i ∈ I. The collection

S = {f−1
i (G) : i ∈ I, G is an open subset of Xi}

is a subbase for a topology on X, and this is the weakest topology such that
fi is continuous for all i ∈ I.

Proof. Let T be the collection of all unions of finite intersections of sets
from S. Then T is a topology on X and S is a subbase for T by the previous
remark. If T ′ is any topology on X such that fi : X → Xi is continuous
for all i ∈ I then by the definition of continuity, f−1

i (G) ∈ T ′ for all open
subsets G ⊆ Xi, so S ⊆ T ′. Since T is the weakest topology containing S
this shows that T ⊆ T ′, so T is the weakest topology such that each fi is
continuous.

This allows us to introduce the following terminology.

2.2.5 Definition. If X is a set, Xi is a topological space and fi : X → Xi

for i ∈ I then the weakest topology on X such that fi is continuous for each
i ∈ I is called the weak topology induced by the family {fi : i ∈ I}.
2.2.6 Proposition. Suppose that X is a topological space with the weak
topology induced by a family of maps {fi : i ∈ I} where fi : X → Xi and Xi

is a topological space for each i ∈ I.
If Y is a topological space then a map g : Y → X is continuous if and

only if fi ◦ g : Y → Xi is continuous for all i ∈ I.

Proof. The sets f−1
i (G) for i ∈ I and G an open subset of Xi form a subbase

for X, by Proposition 2.2.4. Hence, by Remark 2.2.3,

g is continuous ⇐⇒ g−1(f−1
i (G)) is open for all i ∈ I and open G ⊆ Xi

⇐⇒ (fi ◦ g)−1(G) is open for all i ∈ I and open G ⊆ Xi

⇐⇒ fi ◦ g is continuous for all i ∈ I.

2.2.7 Lemma. Suppose that X is a topological space with the weak topology
induced by a family of mappings {fi : X → Xi}i∈I . If Y ⊆ X then the weak
topology induced by the family {fi|Y : Y → Xi}i∈I is the subspace topology
on Y .

Proof. Let gi = fi|Y for i ∈ I. Observe that g−1
i (G) = f−1

i (G) ∩ Y for G an
open subset of Xi. It is not hard to check that the collection of all sets of
this form is a subbase for both the weak topology induced by {gi}i∈I and for
the subspace topology on Y . Hence these topologies are equal.
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2.3 The product topology and Tychonoff’s theorem

If S is a collection of open subsets of X, let us say that an open cover is an
S-cover if every set in the cover is in S.

2.3.1 Theorem (Alexander’s subbase lemma). Let X be a topological space
with a subbase S. If every S-cover of X has a finite subcover, then X is
compact.

Proof. Suppose that the hypothesis holds but that X is not compact. Then
there is an open cover with no finite subcover; ordering such covers by in-
clusion we can apply Zorn’s lemma [FA 2.15] to find an open cover C of X
without a finite subcover that is maximal among such covers.

Note that C ∩ S cannot cover X by hypothesis, so there is some x ∈ X
which does not lie in any set in the collection C ∩ S. On the other hand, C
does cover X so there is some G ∈ C \ S with x ∈ G. Since G is open and
S is a subbase, by Remark 2.2.3 we have

x ∈ S1 ∩ · · · ∩ Sn ⊆ G

for some S1, . . . , Sn ∈ S. For i = 1, . . . , n we have x ∈ Si so Si 6∈ C. By the
maximality of C, there is a finite subcover Ci of C∪{Si}. Let Di = Ci\{Si}.
Then D = D1 ∪ · · · ∪Dn covers X \ (S1 ∩ · · · ∩ Sn). So D ∪ {G} is a finite
subcover of C, which is a contradiction. So X must be compact.

2.3.2 Definition. Let {Xi : i ∈ I} be an indexed collection of sets. Just as
in [FA 2.4], we define the (Cartesian) product of this collection to be the set

∏

i∈I

Xi = {f : I →
⋃

i∈I

Xi : f(i) ∈ Xi for all i ∈ I}.

If each Xi is a topological space then the product topology on X =
∏

i∈I Xi

is the weak topology induced by the family {πi : i ∈ I} where the map πi is
the “evaluation at i” map

πi : X → Xi, f 7→ f(i).

2.3.3 Remark. If f ∈ ∏
i∈I Xi then it is often useful to think of f as the

“I-tuple” (f(i))i∈I . In this notation, we have

∏

i∈I

Xi = {(xi)i∈I : xi ∈ Xi for all i ∈ I}

and πi : (xi)i∈I 7→ xi is the projection onto the ith coordinate.
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2.3.4 Theorem (Tychonoff’s theorem).
The product of a collection of compact topological spaces is compact.

Proof. Let Xi be a compact topological space for i ∈ I and let X =
∏

i∈I Xi

with the product topology. Consider the collection

S = {π−1
i (G) : i ∈ I, G is an open subset of Xi}.

By Proposition 2.2.4, S is a subbase for the topology on X.
Let C be an S-cover of X. For i ∈ I, let Ci = {G ⊆ Xi : π

−1
i (G) ∈ C},

which is a collection of open subsets of Xi.
We claim that there is i ∈ I such that Ci is a cover of Xi. Otherwise,

for every i ∈ I there is some xi ∈ Xi not covered by Ci. Consider the map
f ∈ X defined by f(i) = xi. By construction, f does not lie in π−1

i (G) for
any i ∈ I and G ∈ Ci. However, since C ⊆ S, every set in C is of this form,
so C cannot cover f . This contradiction establishes the claim.

So we can choose i ∈ I so that Ci covers Xi. Since Xi is compact, there
is finite subcover Di of Ci. But then {π−1

i (G) : G ∈ Di} covers X, and this
is a finite subcover of C.

This shows that every S-cover of X has a finite subcover. By Theo-
rem 2.3.1, X is compact.

2.4 The weak* topology

Let X be a Banach space. Recall from [FA 3.2] that the dual space X∗ of X
is the Banach space of continuous linear functionals ϕ : X → C, with the
norm ‖ϕ‖ = sup

‖x‖≤1

|ϕ(x)|.

2.4.1 Definition. For x ∈ X, let Jx : X∗ → C, ϕ 7→ ϕ(x). The weak*
topology on X∗ is the weak topology induced by the family {Jx : x ∈ X}.

2.4.2 Remarks. (i). For x ∈ X, the map Jx is simply the canonical image
of x in X∗∗. In particular, each Jx is continuous when X∗ is equipped
with the usual topology from its norm, so the weak* topology is weaker
(that is, no stronger) than the norm topology on X∗. In fact, the weak*
topology is generally strictly weaker than the norm topology.

(ii). The sets {ψ ∈ X∗ : |ψ(x) − ϕ(x)| < ε} for ϕ ∈ X∗, ε > 0 and x ∈ X
form a subbase for the weak* topology.

(iii). By (ii), it is easy to see that X∗ with the weak* topology is a Hausdorff
topological space.
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2.4.3 Theorem (The Banach-Alaoglu theorem). Let X be a Banach space.
The closed unit ball of X∗ is compact in the weak* topology.

Proof. For x ∈ X let Dx = {λ ∈ C : |λ| ≤ ‖x‖}. Since Dx is closed and
bounded, it is a compact topological subspace of C. Let D =

∏
x∈X Dx

with the product topology. By Tychonoff’s theorem 2.3.4, D is a compact
topological space.

Let X∗
1 = {ϕ ∈ X∗ : ‖ϕ‖ ≤ 1} denote the closed unit ball of X∗, with the

subspace topology that it inherits from the weak* topology on X∗. We must
show that X∗

1 is compact.
If ϕ is any linear map X → C, then ϕ ∈ X∗

1 if and only if |ϕ(x)| ≤ ‖x‖
for all x ∈ X, i.e. ϕ(x) ∈ Dx for all x ∈ X. Thus X∗

1 ⊆ D. Moreover, if
x ∈ X and ϕ ∈ X∗

1 then

Jx(ϕ) = ϕ(x) = πx(ϕ),

so Jx|X∗

1
= πx|X∗

1
. By Lemma 2.2.7, the topology on X∗

1 is equal to the
subspace topology when we view it as a subspace of D.

Since D is compact, it suffices to show that X∗
1 is a closed subset of D.

Now

X∗
1 = {ϕ ∈ D : ϕ is linear} =

⋂

α,β∈C,
x,y∈X

{ϕ ∈ D : παx+βy(ϕ) = απx(ϕ) + βπy(ϕ)}.

By the definition of the product topology on D, the maps πx : D → Dx are
continuous for each x ∈ X. Linear combinations of continuous functions are
continuous, so for x, y, z ∈ X and α, β ∈ C, the function ρ = πz−απx−βπy is
continuousD → C. Hence ρ−1(0) is closed. Each set in the above intersection
is of this form, so X∗

1 is closed.
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