2 A topological interlude

2.1 Topological spaces

Recall that a topological space is a set X with a topology: a collection 7 of
subsets of X, known as open sets, such that () and X are open, and finite
intersections and arbitrary unions of open sets are open. We call a set ' C X
closed if its complement X \ F' is open.

An open cover C' of X is a collection of open subsets of X whose union
is X. A finite subcover of C' is a finite subcollection whose union still con-
tains X. To say that X is compact means that every open cover of X has a
finite subcover. Similarly, if Z C X then an open cover C' of Z is a collection
of open subsets whose union contains Z. We say that Z is compact if every
open cover of Z has a finite subcover. If X is compact, then it is easy to
show that any closed subset of X is also compact.

A topological space Y is Hausdorff if, for any two distinct points yy, yo
in Y, there are disjoint open sets G1,Gs C Y with y; € G; and 33 € Gs. It
is not hard to show that any compact subset of a Hausdorff space is closed.

If X and Y are topological spaces then a map 6: X — Y is continuous if,
for all open sets G C Y, the set 671(G) is open in X. Taking complements,
we see that 6 is continuous if and only if, for all closed K C Y, the set 671 (K)
is closed in X. If Z is a compact subset of X and #: X — Y is continuous,
then 6(Z) is compact.

A homeomorphism from X to Y is a bijection X — Y which is continuous
and has a continuous inverse. If there is a homeomorphism from X to Y,
we say that X and Y are homeomorphic. If X and Y are homeomorphic
topological spaces then all of their topological properties are identical. In
particular, X is compact if and only if ¥ is compact.

Recall that if X is a topological space and Z C X, then the subspace
topology on Z is defined by declaring the open sets of Z to be the sets GNZ
for G an open set of X. Then Z is a compact subset of X if and only if Z is
a compact topological space (in the subspace topology). Also, it is easy to
see that a subspace of a Hausdorff space is Hausdorff.

2.1.1 Lemma. Let X and Y be topological spaces, and suppose that X 1is
compact and Y is Hausdorff.

(i). If 0: X — Y is a continuous bijection, then 6 is a homeomorphism
onto Y. In particular, Y is compact.

(ii). If 0: X — Y is a continuous injection, then 0(X) (with the subspace
topology from Y ) is homeomorphic to X. In particular, 0(X) is a
compact subset of Y.
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Proof. (i) Let K be a closed subset of X. Since X is compact, K is compact.
Since # is continuous, #(K) is compact. A compact subset of a Hausdorff
space is closed, so 0(K) is closed. Hence 6§~ is continuous, which shows that
0 is a homeomorphism. So Y is homeomorphic to the compact space X; so
Y is compact.

(ii) The subspace 6(X) of the Hausdorff space Y is Hausdorff. Let
0: X — 6(X),  — 6(z), which is a continuous bijection. By (i), 8 is a
homeomorphism and 0(X) is compact. O

2.2 Subbases and weak topologies

2.2.1 Definition. If 73 and 75 are two topologies on a set X then we say
that 77 is weaker than 7, if 7; C 7,.
[We might also say that 77 is smaller, or coarser than 75].

2.2.2 Definition. Let (X, 7) be a topological space. We say that a collection
of open sets S C 7 is a subbase for 7 if T is the weakest topology containing
S. If the topology 7 is understood, we will also say that S is a subbase for
the topological space X.

2.2.3 Remark. Suppose that 7 is a topology on X and § C 7. It is not
hard to see that the collection of unions of finite intersections of sets in S
forms a topology on X which is no larger than 7. [The empty set is the
union of zero sets, and X is the intersection of zero sets, so () and X are
in this collection.] From this, it follows that that following conditions are
equivalent:

(i). S is a subbase for T;
(ii). every set in 7 is a union of finite intersections of sets in S;

(iii). aset G C X isin 7 if and only if for every z € G, there exist finitely
many sets S, S9,...,95, € S such that

reSnNSn---nNgs, CdG.

By the equivalence of (i) and (ii), if X, Y are topological spaces and § is
a subbase for X, then a map f: Y — X is continuous if and only if f~1(S)
is open for all S € S.
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2.2.4 Proposition. Let X be a set, let I be an index set and suppose that
X; is a topological space and f;: X — X; for each i € I. The collection

S={fG):iel, G isan open subset of X;}

15 a subbase for a topology on X, and this is the weakest topology such that
fi is continuous for all i € I.

Proof. Let T be the collection of all unions of finite intersections of sets
from S. Then 7 is a topology on X and § is a subbase for 7 by the previous
remark. If 77 is any topology on X such that f;: X — X, is continuous
for all 4 € I then by the definition of continuity, f, *(G) € 7' for all open
subsets G C X;, so S C 7'. Since 7 is the weakest topology containing S
this shows that 7 C 77, so 7 is the weakest topology such that each f; is
continuous. [

This allows us to introduce the following terminology.

2.2.5 Definition. If X is a set, X; is a topological space and f;: X — X;
for ¢ € I then the weakest topology on X such that f; is continuous for each
i € I is called the weak topology induced by the family {f;: i € I}.

2.2.6 Proposition. Suppose that X is a topological space with the weak
topology induced by a family of maps {f;: i € I} where f;: X — X; and X;
1s a topological space for each i € I.

If Y is a topological space then a map g: Y — X is continuous if and
only if fiog: Y — X, is continuous for all i € I.

Proof. The sets f;1(G) for i € I and G an open subset of X; form a subbase
for X, by Proposition 2.2.4. Hence, by Remark 2.2.3,

g is continuous <= ¢ '(f;'(G)) is open for all i € I and open G C X;
<= (fiog) Y(Q) is open for all i € I and open G C X;
<= f;0g is continuous for all 7 € I. m

2.2.7 Lemma. Suppose that X is a topological space with the weak topology
induced by a family of mappings {fi: X — Xi}tier. If Y C X then the weak
topology induced by the family {fily: Y — Xitier is the subspace topology
onY.

Proof. Let g; = fily for i € I. Observe that g;*(G) = f, /(G)NY for G an
open subset of X;. It is not hard to check that the collection of all sets of
this form is a subbase for both the weak topology induced by {g;}ic; and for

the subspace topology on Y. Hence these topologies are equal. [l
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2.3 The product topology and Tychonoff’s theorem

If S is a collection of open subsets of X, let us say that an open cover is an
S-cover if every set in the cover is in S.

2.3.1 Theorem (Alexander’s subbase lemma). Let X be a topological space
with a subbase S. If every S-cover of X has a finite subcover, then X s
compact.

Proof. Suppose that the hypothesis holds but that X is not compact. Then
there is an open cover with no finite subcover; ordering such covers by in-
clusion we can apply Zorn’s lemma [FA 2.15] to find an open cover C' of X
without a finite subcover that is maximal among such covers.

Note that C' 'S cannot cover X by hypothesis, so there is some x € X
which does not lie in any set in the collection C''S. On the other hand, C
does cover X so there is some G € C'\ § with € G. Since G is open and
S is a subbase, by Remark we have

reSin---nNSs,CG

for some S1,...,S5, € S. Fori=1,...,n we have x € S; so S; ¢ C. By the
maximality of C, there is a finite subcover C; of CU{S;}. Let D; = C;\{S;}.
Then D = Dy U---UD,, covers X \ (S1N---NS,). So DU{G} is a finite
subcover of C'; which is a contradiction. So X must be compact. m

2.3.2 Definition. Let {X;: ¢ € I} be an indexed collection of sets. Just as
in [FA 2.4], we define the (Cartesian) product of this collection to be the set

[[Xi={r1-JXi: f(i) € X; for all i € T}.

el el

If each Xj is a topological space then the product topology on X = [],.; X;
is the weak topology induced by the family {m;: ¢ € I} where the map m; is
the “evaluation at ¢” map

e X—)Xi, f!—>f(l)

2.3.3 Remark. If f € J],.,; X; then it is often useful to think of f as the
“I-tuple” (f(7))ies. In this notation, we have

HXZ = {(l’i)ieji T; € Xz for all 7 € I}

i€l

and 7;: (x;);er — w; is the projection onto the ith coordinate.
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2.3.4 Theorem (Tychonoff’s theorem).
The product of a collection of compact topological spaces is compact.

Proof. Let X; be a compact topological space for i € I and let X = [[,.; X;
with the product topology. Consider the collection

S ={nYG):i €I, Gisan open subset of X;}.

By Proposition S is a subbase for the topology on X.

Let C be an S-cover of X. Fori € I, let C; = {G C X;: 7; '(G) € C},
which is a collection of open subsets of Xj.

We claim that there is i € I such that C; is a cover of X;. Otherwise,
for every ¢ € I there is some x; € X; not covered by C;. Consider the map
f € X defined by f(i) = x;. By construction, f does not lie in 7; }(G) for
any ¢ € I and G € C;. However, since C' C S, every set in C' is of this form,
so C' cannot cover f. This contradiction establishes the claim.

So we can choose i € I so that C; covers X;. Since X; is compact, there
is finite subcover D; of C;. But then {r;'(G): G € D;} covers X, and this
is a finite subcover of C.

This shows that every S-cover of X has a finite subcover. By Theo-
rem 2.3.1, X is compact. O

2.4 The weak™* topology

Let X be a Banach space. Recall from [FA 3.2] that the dual space X* of X
is the Banach space of continuous linear functionals ¢ : X — C, with the
norm [f} = sup [@(z)].

lxll<1
2.4.1 Definition. For z € X, let J,: X* — C, ¢ — ¢(z). The weak*
topology on X* is the weak topology induced by the family {J,: x € X}.

2.4.2 Remarks. (i). For x € X, the map J, is simply the canonical image
of x in X**. In particular, each J, is continuous when X* is equipped
with the usual topology from its norm, so the weak™ topology is weaker
(that is, no stronger) than the norm topology on X*. In fact, the weak*
topology is generally strictly weaker than the norm topology.

(ii). The sets {¢p € X*: |¢p(z) — p(x)] < e} for p € X*, e >0and z € X
form a subbase for the weak™ topology.

(iii). By (ii), it is easy to see that X* with the weak™ topology is a Hausdorff
topological space.
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2.4.3 Theorem (The Banach-Alaoglu theorem). Let X be a Banach space.
The closed unit ball of X* is compact in the weak™ topology.

Proof. For x € X let D, = {A € C: |A\| < ||z||}. Since D, is closed and
bounded, it is a compact topological subspace of C. Let D = [, .y D.
with the product topology. By Tychonoff’s theorem [2.3.4, D is a compact
topological space.

Let X7 ={¢p € X*: |l¢]| < 1} denote the closed unit ball of X*, with the
subspace topology that it inherits from the weak™ topology on X*. We must
show that X7 is compact.

If ¢ is any linear map X — C, then ¢ € X7 if and only if |p(z)| < ||z]]
for all x € X, ie. p(z) € D, for all x € X. Thus X] C D. Moreover, if
r € X and ¢ € X| then

so J, Xy = Tz|x; By Lemma 2.2.7, the topology on X7 is equal to the
subspace topology when we view it as a subspace of D.

Since D is compact, it suffices to show that X7 is a closed subset of D.
Now

X;={peD:pislinear} = (] {¢ € D: Masrsy () = ams() + Oy ()}

a7ﬁ€(c7
z,yeX

By the definition of the product topology on D, the maps 7,: D — D, are
continuous for each x € X. Linear combinations of continuous functions are
continuous, so for z,y,z € X and «a, 8 € C, the function p = 7, —am, —fBm, is

continuous D — C. Hence p~1(0) is closed. Each set in the above intersection
is of this form, so X7 is closed. [
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