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1 Introduction to Banach algebras

1.1 Definitions and examples

Let us adopt the convention that all vector spaces and Banach spaces are
over the field of complex numbers.

1.1.1 Definition. A Banach algebra is a vector space A such that

(i). A is an algebra: it is equipped with an associative product (a, b) 7→ ab
which is linear in each variable,

(ii). A is a Banach space: it has a norm ‖ · ‖ with respect to which it is
complete, and

(iii). A is a normed algebra: we have ‖ab‖ ≤ ‖a‖ ‖b‖ for a, b ∈ A.

If the product is commutative, so that ab = ba for all a, b ∈ A, then we say
that A is an abelian Banach algebra.

1.1.2 Remark. The inequality ‖ab‖ ≤ ‖a‖ ‖b‖ ensures that the product is
continuous as a map A× A→ A.

1.1.3 Examples. (i). Let X be a topological space. We write BC (X) for
the set of bounded continuous functions X → C. Recall from [FA 1.7.2]
that BC (X) is a Banach space under the pointwise vector space oper-
ations and the uniform norm, which is given by

‖f‖ = sup
x∈X

|f(x)|, f ∈ BC (X).

The pointwise product

(fg)(x) = f(x)g(x), f, g ∈ BC (X), x ∈ X

turns BC (X) into an abelian Banach algebra. Indeed, the product is
clearly commutative and associative, it is linear in f and g, and

‖fg‖ = sup
x∈X

|f(x)| |g(x)| ≤ sup
x1∈X

|f(x1)| · sup
x2∈X

|g(x2)| = ‖f‖ ‖g‖.

If X is a compact space, then every continuous function X → C is
bounded. For this reason, we will write C(X) instead of BC (X) if X
is compact.
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(ii). If A is a Banach algebra, a subalgebra of A is a linear subspace B ⊆ A
such that a, b ∈ B =⇒ ab ∈ B. If B is a closed subalgebra of a
Banach algebra A, then B is complete, so it is a Banach algebra (under
the same operations and norm as A). We then say that B is a Banach
subalgebra of A.

(iii). Let D = {z ∈ C : |z| < 1} and D = {z ∈ C : |z| ≤ 1}. The disc algebra
is the following Banach subalgebra of C(D):

A(D) = {f ∈ C(D) : f is analytic on D}.

(iv). The set C0(R) of continuous functions f : R → C such that

lim
x→∞

f(x) = lim
x→−∞

f(x) = 0.

This is a Banach subalgebra of BC (R).

(v). Let ℓ1(Z) denote the vector space of complex sequences (an)n∈Z in-
dexed by Z such that ‖a‖ =

∑
n∈Z

|an| < ∞. This is a Banach space
by [FA 1.7.10]. We define a product ∗ such that if a = (an)n∈Z and
b = (bn)n∈Z are in ℓ1(Z) then the nth entry of a ∗ b is

(a ∗ b)n =
∑

m∈Z

ambn−m.

This series is absolutely convergent, and a ∗ b ∈ ℓ1(Z), since

‖a ∗ b‖ =
∑

n

|(a ∗ b)n| =
∑

n

∣∣∣
∑

m

ambn−m

∣∣∣

≤
∑

m,n

|am| |bn−m| =
∑

m

|am|
∑

n

|bm−n| = ‖a‖ ‖b‖ <∞.

It is an exercise to show that ∗ is commutative, associative and linear
in each variable, so it turns ℓ1(Z) into an abelian Banach algebra.

(vi). If X is a Banach space, let B(X) denote the set of all bounded linear
operators T : X → X with the operator norm

‖T‖ = sup
x∈X, ‖x‖≤1

‖Tx‖.

By [FA 3.3], B(X) is a Banach space. Define a product on B(X) by
ST = S ◦ T . This is clearly associative and bilinear, and if x ∈ X with
‖x‖ ≤ 1 then

‖(ST )x‖ = ‖S(Tx)‖ ≤ ‖S‖ ‖Tx‖ ≤ ‖S‖ ‖T‖
so ‖ST‖ ≤ ‖S‖ ‖T‖. Hence B(X) is a Banach algebra. If dimX > 1
then B(X) is not abelian.
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1.2 Invertibility

1.2.1 Definition. A Banach algebra A is unital if A contains an identity
element of norm 1; that is, an element 1 ∈ A such that 1a = a1 = a for all
a ∈ A, and ‖1‖ = 1. We call 1 the unit of A. We sometimes write 1 = 1A to
make it clear that 1 is the unit of A.

If A is a unital Banach algebra and B ⊆ A, we say that B is a unital
subalgebra of A if B is a subalgebra of A which contains the unit of A.

1.2.2 Examples. Of the Banach algebras in Example 1.1.3, only C0(R) is
non-unital. Indeed, it is easy to see that no f ∈ C0(R) is an identity element
for C0(R). On the other hand the constant function taking the value 1 is the
unit for BC (X), and A(D) is a unital subalgebra of C(D). Also, the identity
operator I : X → X, x→ x is the unit for B(X), and is it not hard to check
that the sequence (δn,0)n∈Z is the unit for ℓ1(Z).

1.2.3 Remarks. (i). An algebra can have at most one identity element.

(ii). If (A, ‖ · ‖) is a non-zero Banach algebra with an identity element then
we can define an norm | · | on A under which it is a unital Banach
algebra such that | · | is equivalent to ‖ · ‖, meaning that there are
constants m,M ≥ 0 such that

m|a| ≤ ‖a‖ ≤M |a| for all a ∈ A.

For example, we could take |a| = ‖La : A → A‖ where La is the linear
operator La(b) = ab for a, b ∈ A.

1.2.4 Definition. Let A be a Banach algebra with unit 1. An element a ∈ A
is invertible if ab = 1 = ba for some b ∈ A. It’s easy to see that b is then
unique; we call b the inverse of a and write b = a−1.

We write InvA for the set of invertible elements of A.

1.2.5 Remarks. (i). InvA forms a group under multiplication.

(ii). If a ∈ A is left invertible and right invertible so that ba = 1 and ac = 1
for some b, c ∈ A, then a is invertible.

(iii). If a = bc = cb then a is invertible if and only if b and c are invertible.
It follows by induction that if b1, . . . , bn are commuting elements of A
(meaning that bibj = bjbi for 1 ≤ i, j ≤ n) then b1b2 . . . bn is invertible
if and only if b1, . . . , bn are all invertible.

(iv). The commutativity hypothesis is essential in (iii). For example, if
(en)n≥1 is an orthonormal basis of a Hilbert space H and S ∈ B(H) is
defined by Sen = en+1, n ≥ 1 and S∗ is the adjoint of S (see [FA 4.18])
then S∗S is invertible although S∗ and S are not.
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1.2.6 Examples. (i). If X is a compact topological space then

InvC(X) = {f ∈ C(X) : f(x) 6= 0 for all x ∈ X}.
Indeed, if f(x) 6= 0 for all x ∈ X then we can define g : X → C,
x 7→ f(x)−1. The function g is then continuous [why?] with fg = 1.
Conversely, if x ∈ X and f(x) = 0 then fg(x) = f(x)g(x) = 0 so
fg 6= 1 for all g ∈ C(X), so f is not invertible.

(ii). If X is a Banach space then

InvB(X) ⊆
{
T ∈ B(X) : kerT = {0}

}
.

Indeed, if kerT 6= {0} then T is not injective, so cannot be invertible.

If X is finite-dimensional and kerT = {0} then by linear algebra,
T is surjective, so T is an invertible linear map. Since X is finite-
dimensional, the linear map T−1 is bounded, so T is invertible in B(X).
Hence

InvB(X) =
{
T ∈ B(X) : kerT = {0}

}
if dimX <∞.

On the other hand, if X is infinite-dimensional then we generally have
InvB(X) (

{
T ∈ B(X) : kerT = {0}

}
. For example, let X = H be

an infinite-dimensional Hilbert space with orthonormal basis (en)n≥1.
Consider the operator T ∈ B(H) defined by

Ten = 1
n
en, n ≥ 1.

It is easy to see that kerT = {0}. However, T is not invertible. Indeed,
if S ∈ B(H) with ST = I then Sen = S(nTen) = nSTen = nen, so

‖Sen‖ = n→ ∞ as n→ ∞
and so S is not bounded, which is a contradiction.

1.2.7 Theorem. Let A be a Banach algebra with unit 1. If a ∈ A with
‖a‖ < 1 then 1 − a ∈ InvA and

(1 − a)−1 =
∞∑

n=0

an.

Proof. Since ‖an‖ ≤ ‖a‖n and ‖a‖ < 1, the series
∑∞

n=0 a
n is absolutely

convergent and so convergent by [FA 1.7.8], say to b ∈ A. Let bn be the nth
partial sum of this series and note that

bn(1 − a) = (1 − a)bn = (1 − a)(1 + a+ a2 + · · · + an) = 1 − an+1 → 1

as n→ ∞. So b(1 − a) = (1 − a)b = 1 and so b = (1 − a)−1.
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1.2.8 Corollary. InvA is an open subset of A.

Proof. Let a ∈ InvA and let ra = ‖a−1‖−1. We claim that the open ball
B(a, ra) = {b ∈ A : ‖a − b‖ < ra} is contained in InvA; for if b ∈ B(a, ra)
then ‖a− b‖ < ra and

b = (a− (a− b))a−1a = (1 − (a− b)a−1)a.

Since ‖(a − b)a−1‖ < ra‖a−1‖ < 1, the element 1 − (a − b)a−1 is invertible
by Theorem 1.2.7. Hence b is the product of two invertible elements, so is
invertible. This shows that every element of InvA may be surrounded by an
open ball which is contained in InvA, hence InvA is open.

1.2.9 Corollary. The map θ : InvA → InvA, a 7→ a−1 is a homeomor-
phism.

Proof. Since (a−1)−1 = a, the map θ is a bijection with θ = θ−1. So we only
need to show that θ is continuous.

If a ∈ InvA and b ∈ InvA with ‖a − b‖ < 1
2
‖a−1‖−1 then using the

triangle inequality and the identity

a−1 − b−1 = a−1(b− a)b−1 (⋆)

we have

‖b−1‖ ≤ ‖a−1−b−1‖+‖a−1‖ ≤ ‖a−1‖ ‖a−b‖ ‖b−1‖+‖a−1‖ ≤ 1
2
‖b−1‖+‖a−1‖,

so ‖b−1‖ ≤ 2‖a−1‖. Using (⋆) again, we have

‖θ(a) − θ(b)‖ = ‖a−1 − b−1‖ ≤ ‖a−1‖ ‖a− b‖ ‖b−1‖ < 2‖a−1‖2‖a− b‖,

which shows that θ is continuous at a.

1.3 The spectrum

1.3.1 Definition. Let A be a unital Banach algebra and let a ∈ A. The
spectrum of a in A is

σ(a) = σA(a) = {λ ∈ C : λ1 − a 6∈ InvA}.

We will often write λ instead of λ1 for λ ∈ C.
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1.3.2 Examples. (i). We have σ(λ1) = {λ} for any λ ∈ C.

(ii). Let X be a compact topological space. If f ∈ C(X) then

σ(f) = f(X) = {f(x) : x ∈ X}.

Indeed,

λ ∈ σ(f) ⇐⇒ λ1 − f 6∈ InvC(X)

⇐⇒ (λ1 − f)(x) = 0 for some x ∈ X, by Example 1.2.6(i)

⇐⇒ λ = f(x) for some x ∈ X

⇐⇒ λ ∈ f(X).

(iii). If X is a finite-dimensional Banach space and T ∈ B(X) then

σ(T ) = {λ ∈ C : λ is an eigenvalue of T}.

Indeed,

λ ∈ σ(T ) ⇐⇒ T − λ 6∈ InvB(X)

⇐⇒ ker(λI − T ) 6= {0} by Example 1.2.6(ii)

⇐⇒ (λI − T )(x) = 0 for some nonzero x ∈ X

⇐⇒ Tx = λx for some nonzero x ∈ X

⇐⇒ λ is an eigenvalue of T .

If X is an infinite-dimensional Banach space, then the same argument
shows that σ(T ) contains the eigenvalues of T , but generally this in-
clusion is strict.

We will need the following algebraic fact later on.

1.3.3 Proposition. Let A be a unital Banach algebra and let a, b ∈ A.

(i). If 1 − ab ∈ InvA then 1 − ba ∈ InvA, and

(1 − ba)−1 = 1 + b(1 − ab)−1a.

(ii). σ(ab) \ {0} = σ(ba) \ {0}.

Proof. Exercise.
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To show that the spectrum is always non-empty, we will use a vector-
valued version of Liouville’s theorem:

1.3.4 Lemma. Let X be a Banach space and suppose that f : C → X is
an entire function in the sense that f(µ)−f(λ)

µ−λ
converges in X as µ → λ, for

every λ ∈ C. If f is bounded then f is constant.

Proof. Given a continuous linear functional ϕ ∈ X∗, let g = ϕ ◦ f : C → C.
Since g(µ)−g(λ)

µ−λ
= ϕ(f(µ)−f(λ)

µ−λ
) and |g(λ)| ≤ ‖g‖ ‖f(λ)‖, the function g is entire

and bounded. By Liouville’s theorem it is constant, so ϕ(f(λ)) = ϕ(f(µ))
for all ϕ ∈ X∗ and λ, µ ∈ C. By the Hahn-Banach theorem (see [FA 3.8]),
f(λ) = f(µ) for all λ, µ ∈ C. So f is constant.

1.3.5 Theorem. Let A be a unital Banach algebra. If a ∈ A then σ(a) is a
non-empty compact subset of C with σ(a) ⊆ {λ ∈ C : |λ| ≤ ‖a‖}.

Proof. The map i : C → A, λ 7→ λ− a is continuous and

σ(a) = {λ ∈ C : i(λ) 6∈ InvA} = C \ i−1(InvA).

Since InvA is open by Corollary 1.2.8 and i is continuous, i−1(InvA) is open
and so its complement σ(a) is closed.

If |λ| > ‖a‖ then λ−a = λ(1−λ−1a) and ‖λ−1a‖ = |λ|−1‖a‖ < 1 so λ−a is
invertible by Theorem 1.2.7, so λ 6∈ σ(a). Hence σ(a) ⊆ {λ ∈ C : |λ| ≤ ‖a‖}.
In particular, σ(a) is bounded as well as closed, so σ(a) is a compact subset
of C.

Finally, we must show that σ(a) 6= ∅. If σ(a) = ∅ then the map

R : C → A, λ 7→ (λ− a)−1

is well-defined. It not hard to show using (⋆) that

R(µ) −R(λ)

µ− λ
= −R(λ)R(µ) for λ, µ ∈ C with λ 6= µ.

Corollary 1.2.9 shows that R is continuous, so we conclude that R is an entire
function (with derivative R′(λ) = −R(λ)2).

Now ‖R(λ)‖ = ‖(λ − a)−1‖ = |λ|−1‖(1 − λ−1a)−1‖ and 1 − λ−1a → 1 as
|λ| → ∞ so, by Corollary 1.2.9, (1 − λ−1a)−1 → 1. Hence ‖R(λ)‖ → 0 as
|λ| → ∞.

Hence R is a bounded entire function, so it is constant by Lemma 1.3.4;
since R(λ) → 0 as |λ| → ∞ we have R(λ) = 0 for all λ ∈ C. This is a
contradiction since R(λ) is invertible for any λ ∈ C.
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The next result says that C is essentially the only unital Banach algebra
which is also a field.

1.3.6 Corollary (The Gelfand-Mazur theorem). If A is a unital Banach
algebra in which every non-zero element is invertible then A = C1A.

Proof. Let a ∈ A. Since σ(a) 6= ∅ there is some λ ∈ σ(a). Now λ1−a 6∈ InvA,
so λ1 − a = 0 and a = λ1 ∈ C1.

1.3.7 Definition. If a is an element of a unital Banach algebra and p ∈ C[z]
is a complex polynomial, say p = λ0 + λ1z + · · · + λnz

n where λ0, λ1, . . . , λn

are complex numbers, then we write

p(a) = λ01 + λ1a+ · · · + λna
n.

1.3.8 Theorem (The spectral mapping theorem for polynomials). If p is a
complex polynomial and a is an element of a unital Banach algebra then

σ(p(a)) = p(σ(a)) = {p(λ) : λ ∈ σ(a)}.

Proof. If p is a constant then this immediate since σ(λ1) = {λ}. Suppose
that n = deg p ≥ 1 and let µ ∈ C. Since C is algebraically closed, we can
write

µ− p = C(λ1 − z) . . . (λn − z)

for some C, λ1, . . . , λn ∈ C. Then

µ− p(a) = C(λ1 − a) . . . (λn − a)

and the factors λi − a all commute. So

µ ∈ σ(p(a)) ⇐⇒ µ− p(a) is not invertible

⇐⇒ some λi − a is not invertible (by Remark 1.2.5(iii))

⇐⇒ some λi is in σ(a)

⇐⇒ σ(a) contains a root of µ− p

⇐⇒ µ = p(λ) for some λ ∈ σ(a).

1.3.9 Definition. Let A be a unital Banach algebra. The spectral radius of
an element a ∈ A is

r(a) = rA(x) = sup
λ∈σA(a)

|λ|.

1.3.10 Remark. We have r(a) ≤ ‖a‖ by Theorem 1.3.5.
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1.3.11 Examples. (i). If X is a compact topological space and f ∈ C(X),
then

r(f) = sup
λ∈σA(f)

|λ| = sup
λ∈f(X)

|λ| = ‖f‖.

(ii). To see that strict inequality is possible, take X = C2 with the usual
Hilbert space norm and let T ∈ B(X) be the operator with matrix(

0 1
0 0

)
. Since det(T − λI) = λ2, the only eigenvalue of T is 0 and so

σ(T ) = {0} by Example 1.3.2(iii). Hence r(T ) = 0 < 1 = ‖T‖.

1.3.12 Theorem (The spectral radius formula). The spectral radius of an
element of a unital Banach algebra is given by

r(a) = lim
n→∞

‖an‖1/n = inf
n≥1

‖an‖1/n.

Proof. If λ ∈ σ(a) and n ≥ 1 then λn ∈ σ(an) by Theorem 1.3.8. So |λ|n ≤
‖an‖ by Theorem 1.3.5, hence |λ| ≤ ‖an‖1/n and so r(a) ≤ infn≥1 ‖an‖1/n.

Consider the function

S : {λ ∈ C : |λ| < 1/r(a)} → A, λ 7→ (1 − λa)−1.

Observe that for |λ| < 1/r(a) we have r(λa) = |λ|r(a) < 1 by Theorem 1.3.8,
so 1 − λa is invertible and S(λ) is well-defined. We can argue as in the
proof of Theorem 1.3.5 to see that S is holomorphic. By Theorem 1.2.7
we have S(λ) =

∑∞
n=0 λ

nan for |λ| < 1/‖a‖. If ϕ ∈ A∗ with ‖ϕ‖ = 1
then the complex-valued function f = ϕ ◦ S is given by the power series
f(λ) =

∑∞
n=0 ϕ(an)λn for |λ| < 1/‖a‖. Moreover, f is holomorphic for

|λ| < 1/r(a), so this power series converges to f(λ) for |λ| < 1/r(a). Hence
for R > r(a) we have

ϕ(an) =
1

2πi

∫

|λ|=1/R

f(λ)

λn+1
dλ

and we obtain the estimate

|ϕ(an)| ≤ 1

2π
· 2π

R
·Rn+1 · sup

|λ|=1/R

|ϕ(S(λ))| ≤ RnM(R)

where M(R) = sup|λ|=1/R ‖S(λ)‖, which is finite by the continuity of S on
the compact set {λ ∈ C : |λ| = 1/R}. Since S(λ) 6= 0 for any λ in the domain
of S, we have M(R) > 0. Hence

lim sup
n≥1

‖an‖1/n ≤ lim sup
n≥1

RM(R)1/n = R
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whenever R > r(a). We conclude that

r(a) ≤ inf
n≥1

‖an‖1/n ≤ lim inf
n≥1

‖an‖1/n ≤ lim sup
n≥1

‖an‖1/n ≤ r(a)

and the result follows.

1.3.13 Corollary. If A is a unital Banach algebra and B is a closed unital
subalgebra of A then rA(b) = rB(b) for all b ∈ B.

Proof. The norm of an element of B is the same whether we measure it in B
or in A. By the spectral radius formula, rA(b) = limn≥1 ‖bn‖1/n = rB(b).

While the spectral radius of an element of a Banach algebra does not
depend if we compute it in a subalgebra, the spectrum itself can change. We
explore this in the next few results.

Suppose that A is a unital Banach algebra and B is a unital Banach
subalgebra of A. If an element of b is invertible in B, then it is invertible
in A; so InvB ⊆ B ∩ InvA. However, this inclusion may be strict, as the
following example shows.

1.3.14 Example. Recall that A(D) is the disc algebra of continuous func-
tions D → C which are holomorphic on D. Note that, by the maximum
modulus principle, supz∈D

|f(z)| = supθ∈[0,2π) |f(eiθ)|. Hence ‖f‖ = ‖f |T‖,
and the map A(D) → C(T), f 7→ f |T is a unital isometric isomorphism. So
we may identify A(D) with A(T) = {f |T : f ∈ A(D)}, which is a closed unital
subalgebra of C(T).

Consider the function f(z) = z for z ∈ D. This is not invertible in A(D)
since f(0) = 0. Hence f |T is not invertible in A(T). However, f is invertible
in C(T) with inverse g : eiθ 7→ e−iθ. So InvA(T) ( A(T) ∩ InvC(T).

1.3.15 Definition. If A is a unital Banach algebra then a subalgebra B ⊆ A
with 1 ∈ B is said to be inverse-closed if InvB = B ∩ InvA; that is, if every
b ∈ B which is invertible in A also has b−1 ∈ B.

Clearly, ifB is an inverse-closed unital subalgebra ofA then σB(b) = σA(b)
for all b ∈ B.

IfK is a non-empty compact subset of C then exactly one of the connected
components of C \K is unbounded. The bounded components of C \K are
called the holes of K. If A is a unital Banach algebra and a ∈ A, let us write

RA(a) = C \ σA(a) = {λ ∈ C : λ− a ∈ InvA}.

This is sometimes called the resolvent set of a. Note that the bounded
connected components of RA(a) are precisely the holes of σA(a).

10



1.3.16 Theorem. Let B be a closed subalgebra of a unital Banach algebra A
with 1 ∈ B. If b ∈ B then σB(b) is the union of σA(b) with zero or more of
the holes of σA(b). In particular, if σA(b) has no holes then σB(b) = σA(b).

Proof. Since InvB ⊆ InvA we have RB(b) ⊆ RA(b), and so σA(b) ⊆ σB(b),
for each b ∈ B. We claim that RB(b) is a relatively clopen subset of RA(b).
Since σB(b) is closed by Theorem 1.3.5, RB(b) is open. The map

i : RA(b) → A, λ 7→ (λ− b)−1

is continuous by Corollary 1.2.9, and

RB(b) = {λ ∈ RA(b) : i(λ) = (λ− b)−1 ∈ B} = i−1(B).

Since B is closed, RB(b) is closed.
If G is a connected component of RA(b) then G ∩ RB(b) is either ∅ or

G. For otherwise, since RB(b) is clopen, G ∩RB(b) and G \RB(b) would be
proper clopen subsets of the connected set G, which is impossible. If G is
the unbounded component of RA(b) then, since σB(b) is bounded, we must
have G ∩ σB(b) = ∅. The bounded components of RA(b) are precisely holes
of σA(b). Hence

σB(b) = σA(b) ∪
⋃

{G a hole of σA(b) : G ∩ σB(b) 6= ∅}.

If σA(b) has no holes then this reduces to σB(b) = σA(b).

1.3.17 Definition. Let A be a Banach algebra. If S ⊆ A then the commu-
tant of S in A is

S ′ = {a ∈ A : ab = ba for all b ∈ S}.

The bicommutant of S in A is S ′′ = (S ′)′.
A set S ⊆ A is commutative if ab = ba for all a, b ∈ S. Hence S is

commutative if and only if S ⊆ S ′.

1.3.18 Lemma. Let A be a Banach algebra. If T ⊆ S ⊆ A, then T ′ ⊇ S ′.
Moreover, S ⊆ S ′′ and S ′ = S ′′′.

Proof. Exercise.

1.3.19 Proposition. Let A be a unital Banach algebra and let S ⊆ A.

(i). S ′ is a closed, inverse-closed unital subalgebra of A.

(ii). If S is commutative then so is B = S ′′, and σB(b) = σA(b) for all
b ∈ B.
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Proof. (i) Since multiplication is continuous on A, it is easy to see that the
commutant S ′ is closed. Clearly 1 ∈ S ′, and using the linearity of multi-
plication shows that S ′ is a vector subspace of A, and it is a subalgebra by
associativity. If b ∈ S ′ ∩ InvA then bc = cb for all c ∈ S, so cb−1 = b−1c for
all c ∈ S, so b−1 ∈ S ′ and S ′ is inverse-closed.

(ii) We have S ⊆ S ′, so S ′ ⊇ S ′′ and S ′′ ⊆ S ′′′ by Lemma 1.3.18. Hence
B = S ′′ is commutative. Moreover, B is an inverse-closed subalgebra of A
by (i), so σB(b) = σA(b) for all b ∈ B.

1.3.20 Definition. Let A be a Banach algebra without an identity element.

The unitisation of A is the Banach algebra Ã whose underlying vector space
is A⊕C with the product (a, λ)(b, µ) = (ab+λb+µa, λµ) and norm ‖(a, λ)‖ =

‖a‖ + |λ| for a, b ∈ A and λ, µ ∈ C. Note that Ã is then a unital Banach
algebra containing A (or, more precisely, A× {0}).
1.3.21 Definition. If A has no identity element and a ∈ A, then we define
σA(a) = σ eA(a). In this case we have 0 ∈ σ(A) for all a ∈ A.

1.3.22 Remark. With this definition, many of the important theorems
above apply to non-unital Banach algebras, simply by considering Ã instead
of A. In particular, it is easy to check that non-unital versions of Theo-
rems 1.3.5, 1.3.8 and 1.3.12 hold.

1.4 Quotients of Banach spaces

Recall that if K is a subspace of a complex vector space X, then the quotient
vector space X/K is given by

X/K = {x+K : x ∈ X}
with scalar multiplication λ(x+K) = λx+K, λ ∈ C, x ∈ X

and vector addition (x+K) + (y +K) = (x+ y) +K, x, y ∈ X, λ ∈ C.

The zero vector in X/K is 0 +K = K.

1.4.1 Definition. If K is a closed subspace of a Banach space X then the
quotient Banach space X/K is the vector space X/K equipped with the
quotient norm, defined by

‖x+K‖ = inf
k∈K

‖x+ k‖.

1.4.2 Proposition. Let X be a Banach space and let K be a closed vector
subspace of X. The quotient norm is a norm on the vector space X/K, with
respect to which X/K is complete. Hence the quotient Banach space X/K is
a Banach space.

12



Proof. To see that the quotient norm is a norm, observe that:

• ‖x + K‖ ≥ 0 with equality if and only if inf
k∈K

‖x + k‖ = 0, which is

equivalent to x being in the closure of K; since K is closed, this means
that x ∈ K so x+K = K, the zero vector of X/K.

• If λ ∈ C with λ 6= 0 then

‖λ(x+K)‖ = inf
k∈K

‖λx+ k‖ = |λ| inf
k∈K

‖x+ λ−1k‖

= |λ| inf
k′∈K

‖x+ k‖ = |λ| ‖x+K‖.

• The triangle inequality holds since K = {s+ t : s, t ∈ K} and so

‖(x+K) + (y +K)‖ = ‖x+ y +K‖ = inf
k∈K

‖x+ y + k‖

= inf
s,t∈K

‖x+ y + s+ t‖

≤ inf
s∈K

‖x+ s‖ + inf
t∈K

‖y + t‖

= ‖x+K‖ + ‖y +K‖.

It remains to show that X/K is complete in the quotient norm. For any
x ∈ X, it is not hard to see that:

(i) if ε > 0 then there exists k ∈ K such that ‖x+ k‖ < ‖x+K‖+ ε; and

(ii) ‖x+K‖ ≤ ‖x‖ (since 0 ∈ K).

Let xj ∈ X with
∑∞

j=1 ‖xj + K‖ < ∞. From observation (i), it follows
that there exist kj ∈ K with

∑∞
j=1 ‖xj + kj‖ <∞, so by [FA 1.7.8] the series∑∞

j=1 xj + kj converges in X, say to s ∈ X. By observation (ii),

∥∥∥s+K−
( n∑

j=1

xj +K
)∥∥∥ =

∥∥∥
(
s−

n∑

j=1

xj +kj

)
+K

∥∥∥ ≤
∥∥∥s−

n∑

j=1

xj +kj

∥∥∥ → 0

as n → ∞, so
∑∞

j=1 xj + kj converges to s + K. This shows that every ab-
solutely convergent series in X/K is convergent with respect to the quotient
norm, so X/K is complete by [FA 1.7.8].
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1.5 Ideals, quotients and homomorphisms of Banach

algebras

1.5.1 Definition. An ideal of a Banach algebra A is a vector subspace I
of A such that for all x ∈ I and a ∈ A we have ax ∈ I and xa ∈ I.

1.5.2 Definition. Let I be a closed ideal of a Banach algebra A. The
quotient Banach algebra A/I is the quotient Banach space A/I equipped
with the product (a+ I)(b+ I) = ab+ I for a, b ∈ I.

1.5.3 Theorem. If I is a closed ideal of a Banach algebra A then A/I is a
Banach algebra. If A is abelian then so is A/I. If A is unital then so is A/I,
and 1A/I = 1A + I.

Proof. We saw in Proposition 1.4.2 that A/I is a Banach space. Just as
for quotient rings, the product is well-defined, since if a1 + I = a2 + I and
b1 +I = b2 +I then a1−a2 ∈ I and b1−b2 ∈ I, so a1(b1−b2)+(a1−a2)b2 ∈ I
and so

(a1b1 + I)− (a2b2 + I) = a1b1 − a2b2 + I = a1(b1 − b2) + (a1 − a2)b2 + I = I,

hence a1b1 + I = a2b2 + I. It is easy to see that this product is linear in each
variable.

Let a, b ∈ A. We have

‖a+ I‖ ‖b+ I‖ = inf
y,z∈I

‖a+ y‖ ‖b+ z‖

≥ inf
y,z∈I

‖(a+ y)(b+ z)‖ (by 1.1.1(iii) in A)

= inf
y,z∈I

‖ab+ (az + yb+ yz)‖

≥ inf
x∈I

‖ab+ x‖ (since az + by + yz ∈ I for all y, z ∈ I)

= ‖ab+ I‖ = ‖(a+ I)(b+ I)‖.

Hence the inequality 1.1.1(iii) holds in A/I, and we have shown that A/I is
a Banach algebra.

If A is abelian then (a+ I)(b+ I) = ab+ I = ba+ I = (b+ I)(a+ I) for
all a, b ∈ A, so A/I is abelian. The proof of the final statement about units
is left as an exercise.

1.5.4 Definition. A proper ideal of a Banach algebra A an ideal of A which
is not equal to A. A maximal ideal of A is a proper ideal such which is not
contained in any strictly larger proper ideal of A.

14



1.5.5 Lemma. Let A be a unital Banach algebra. If I is an ideal of A, then
I is a proper ideal if and only if I ∩ InvA = ∅.

Proof. We have 1 ∈ InvA, so if I ∩ InvA = ∅ then 1 6∈ I, so I 6= A and I is
a proper ideal. Conversely, if I ∩ InvA 6= ∅, let b ∈ I ∩ InvA. If a ∈ A then
a = (ab−1)b ∈ I, since I is an ideal and b ∈ I. So I = A.

1.5.6 Theorem. Let A be a unital Banach algebra.

(i). If I is a proper ideal of A then the closure I is also a proper ideal of A.

(ii). Any maximal ideal of A is closed.

Proof. (i) The closure of a vector subspace of A is again a vector subspace.
If a ∈ A and xn is a sequence in I converging to x ∈ I then axn → ax and
xna→ xa as n→ ∞. Since each axn and xna is in I, this shows that ax and
xa are in I, which is therefore an ideal of A.

Since I is a proper ideal we have I ∩ InvA = ∅ by Lemma 1.5.5. Since
InvA is open by Corollary 1.2.8, this shows that I ∩ InvA = ∅ so I 6= A.

(ii) Let M be a maximal ideal. Since M ⊆ M and M is a proper ideal
by (i), we must have M = M , so M is closed.

1.5.7 Remarks. (i). Since we know a few results about ideals of rings,
we would like to apply these to ideals of Banach algebras. Any unital
Banach algebra A may be viewed as a unital ring R by ignoring the
norm and scalar multiplication. However, there is a difference in the
definitions: ideals of R are not required to be linear subspaces (since
R has no linear structure) whereas ideals of A are. However, the two
definitions turn out to be equivalent if A is unital. Indeed, an ideal
of the Banach algebra A is clearly an ideal of the ring R. Conversely,
if I is an ideal of the ring R then since λ1 ∈ R for λ ∈ C we have
λx = λ1 · x ∈ I for all x ∈ I, so I is a vector subspace of A with the
ideal property. So I is an ideal of A.

(ii). By [FA 2.16], any proper ideal of a unital Banach algebra A is contained
in a maximal ideal of A.

1.5.8 Definition. Let A and B be Banach algebras. A homomorphism from
A to B is a linear map θ : A → B which is multiplicative in the sense that
θ(ab) = θ(a)θ(b) for all a, b ∈ A.

The kernel of such a homomorphism θ is the set

ker θ = {a ∈ A : θ(a) = 0}.
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If A and B are unital Banach algebras, we say that a homomorphism
θ : A→ B is unital if θ(1A) = 1B.

A bijective homomorphism θ : A → B is an isomorphism. If such an
isomorphism exists then the Banach algebras A and B are isomorphic. It is
easy to see that if θ is an isomorphism then so is θ−1.

1.5.9 Remark. If θ : A → B is a non-zero homomorphism of Banach al-
gebras then ker θ is an ideal of A, which is proper unless θ = 0. If θ is
continuous then ker θ is a closed ideal of A.

1.5.10 Remark. We usually say that two objects are isomorphic if they
have the same structure; that is, if they are the same “up to relabelling”.
However, if two Banach algebras A and B are isomorphic then this tells us
that they have the same structure as algebras, but not necessarily as Banach
algebras, since the norms may not be related.

The strongest notion of “the same Banach algebra up to relabelling” is
isometric isomorphism. Two Banach algebras A and B are isometrically
isomorphic if there is an isomorphism θ : A → B which is also an isometry,
meaning that ‖θ(a)‖ = ‖a‖ for all a ∈ A (compare with [FA 1.3.8]).

1.5.11 Examples. (i). If A is a non-unital Banach algebra then the map

θ : A→ Ã, a 7→ (a, 0) from Definition 1.3.20 is an isometric homomor-

phism. Hence θ(A) is a Banach subalgebra of Ã which is isometrically
isomorphic to A.

(ii). The map A(D) → A(T), f 7→ f |T from Example 1.3.14 is a unital
isometric isomorphism.

1.5.12 Proposition. Let A and B be unital Banach algebras and let θ : A→
B be a unital homomorphism.

(i). θ(InvA) ⊆ InvB, and θ(a)−1 = θ(a−1) for a ∈ InvA.

(ii). For all a ∈ A we have σA(a) ⊇ σB(θ(a)).

(iii). If θ is an isomorphism then σA(a) = σB(θ(a)) for all a ∈ A.

Proof. (i) If a ∈ InvA then θ(a)θ(a−1) = θ(aa−1) = θ(1) = 1 and θ(a−1)θ(a) =
θ(a−1a) = θ(1) = 1, so θ(a) is invertible in B, with inverse θ(a−1).

(ii) If λ ∈ σB(θ(a)) then λ − θ(a) = θ(λ − a) 6∈ InvB so λ − a 6∈ InvA
by (i). Hence λ ∈ σA(a).

(iii) Since θ−1 is a homomorphism, by (ii) we have

σA(a) = σA(θ−1(θ(a))) ⊆ σB(θ(a)) ⊆ σA(a),

and we have equality.
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