Some useful facts about vector spaces over fields

Let *F* be a field.

Definition. A vector space over *F* is a set *V* with two maps, $+: V \times V \rightarrow V$ and $\cdot: F \times V \rightarrow V$ so that:

- (a) (V, +) is an abelian group
- (b) for all $\lambda, \mu \in F$ and all $v, w \in V$ we have

 $\lambda \cdot (v + w) = \lambda \cdot v + \lambda \cdot w, \quad (\lambda + \mu) \cdot v = \lambda \cdot v + \lambda \cdot w, \quad \lambda \cdot (\mu \cdot v) = (\lambda \mu) \cdot v, \quad \text{and} \quad 1_F \cdot v = v.$

We often call the elements of *V* vectors, the elements of *F* scalars, and we call the operation + vector addition, and \cdot scalar multiplication. We usually also write the identity element of (V, +) as the zero vector, 0, and the inverse of $v \in V$ in (V, +) is written as -v.

Definition. Let $W = \{w_1, w_2, \dots, w_n\}$ be a finite subset of *V*.

- (a) *W* is linearly independent (over *F*) if the only $\lambda_1, ..., \lambda_n \in F$ with $\lambda_1 w_1 + \cdots + \lambda_n w_n = 0$ are $\lambda_1 = 0, \lambda_2 = 0, ..., \lambda_n = 0$
- (b) *W* spans *V* (over *F*) if every $v \in V$ can be written as $v = \lambda_1 w_1 + \dots + \lambda_n w_n$ for some $\lambda_1, \dots, \lambda_n \in F$.
- (c) *W* is a basis for *V* (over *F*) if it is both linearly independent, and spans *V*.
- **Fact 1.** (a) *V* has no basis if and only if, for every $n \ge 1$ there is a linearly independent subset of *V* which has size *n*.
 - (b) If *V* has a basis, then any two bases of *V* have the same size.

Definition.

$$\dim(V) = \dim_F(V) = \begin{cases} \infty & \text{if } V \text{ has no basis} \\ |W| & \text{if } V \text{ has a basis } W \end{cases}$$

This is well-defined by the previous fact. We call $\dim(V)$ the dimension of *V* (over *F*). If $\dim(V) \neq \infty$ we say *V* is finite-dimensional (over *F*), or write $\dim(V) < \infty$.

Fact 2. Suppose that *V* is finite-dimensional. If *W* is a linearly independent subset of *V*, then $|W| \le \dim(V)$. Moreover,

- (a) $|W| = \dim(V) \iff W$ is a basis for *V*, and
- (b) if $|W| < \dim(V)$ then $W \subseteq B$ for some basis B of V.

Definition. A (vector) subspace of V is a subset U which is also a vector space over F (with the same (actually, the restrictions of) vector addition and scalar addition on V).

Fact 3. If *U* is a subspace of *V*, then $\dim(U) \leq \dim(V)$. If $\dim(V) < \infty$ then

 $U = V \iff \dim(U) = \dim(V).$

(If $\dim(V) = \infty$ then this isn't true).

These facts should all be familiar to you for vector spaces over \mathbb{R} . The proofs are practically identical for vector spaces over *F*, where *F* is any field.