Proposition 1. Let $(R, +, \cdot)$ be a ring.

- (a) -0 = 0 and -(-x) = x for every $x \in R$.
- (b) If $x, y, z \in R$ then $x + z = y + z \implies x = y$ and $z + x = z + y \implies x = y$.
- (c) If $n \in \mathbb{Z}$ and $x \in R$, define

$$nx = \begin{cases} x + \dots + x & (n \text{ times}) & \text{if } n > 0, \\ 0 & \text{if } n = 0, \\ -x - \dots - x & (-n \text{ times}) & \text{if } n < 0. \end{cases}$$

Then (n+m)x = nx+mx and n(mx) = (nm)x for all $n, m \in \mathbb{Z}$ and $x \in R$.

Proposition 2. If *R* is a ring, then $0_R \cdot x = 0_R$ and $x \cdot 0_R = 0_R$ for all $x \in R$.

Proposition 3. (a) If *R* is a unital ring and $x \in R$ is invertible, then *x* is not a zero-divisor.

(b) If *R* is a division ring, then *R* contains no zero-divisors.

Lemma 4. If *R* is a unital ring and $a, x, b \in R$ with $ax = 1_R$ and $xb = 1_R$, then *x* is invertible and $a = b = x^{-1}$.

Lemma 5. If *R* is a ring with no zero-divisors, then

$$xy = 0 \implies x = 0 \text{ or } y = 0$$

for all $x, y \in R$.

Proposition 6 (Cancellation in a ring with no zero-divisors). If *R* is a ring with no zero-divisors and $x \in R^{\times}$, then for any $a, x, b \in R$,

- (a) $ax = bx \implies a = b$, and
- (b) $xa = xb \implies a = b$.

Theorem 7. If *R* is a finite unital ring with no zero-divisors, then *R* is a division ring.

- **Corollary 8.** (a) If *R* is a finite unital ring, then *R* is a division ring if and only if *R* has no zero-divisors.
- (b) If *R* is a finite commutative unital ring, then *R* is a field if and only if *R* has no zero-divisors.

Lemma 9. If $n \in \mathbb{N}$ with n > 1, then *n* is prime if and only if

 $\forall k, \ell \in \mathbb{Z}, \quad n | k\ell \implies n | k \text{ or } n | \ell.$

Corollary 10. The ring $(\mathbb{Z}_n, \oplus, \odot)$ is a field if and only if *n* is prime.

Theorem 11. If $(R, +, \cdot)$ is a ring and $S \subseteq R$, then the following are equivalent:

- (a) *S* is a subring of *R*;
- (b) (*S*, +) is a subgroup of (*R*, +) and *S* is closed under multiplication;
- (c) $S \neq \emptyset$, and for all $x, y \in S$ we have $x y \in S$ and $xy \in S$.

Proposition 12. Let *R* and *S* be rings, and let θ : $R \rightarrow S$ be a (ring) homomorphism.

- (a) $\theta(0_R) = 0_S$
- (b) $\theta(-x) = -\theta(x)$ for all $x \in R$
- (c) $\theta(x y) = \theta(x) \theta(y)$ for all $x, y \in R$
- (d) $\theta(mx) = m\theta(x)$ for all $m \in \mathbb{Z}$ and $x \in R$

Proposition 13. Let *R* and *S* be rings, and let θ : $R \rightarrow S$ be a (ring) homomorphism. The image of θ , that is, the set

$$\theta(R) = \{\theta(x) \colon x \in R\}$$

is a subring of *S*.

Proposition 14. Let *R* and *S* are rings, and let θ : $R \rightarrow S$ be a (ring) homomorphism.

(a) If *R* is a unital ring, then so is $\theta(R)$.

(b) If *R* is a commutative ring, then so is $\theta(R)$.

(c) θ is injective if and only if ker $\theta = \{0_R\}$.

Proposition 15. If *R* and *S* are rings and $\theta \colon R \to S$ is a (ring) homomorphism, then ker θ is an ideal in *R*.

Theorem/Definition 16. If *I* is an ideal of a ring *R*, then there are two well-defined operations on set $R/I = \{I + x : x \in R\}$ given by

(I + x) + (I + y) = I + (x + y) and (I + x)(I + y) = I + xy

which turn R/I into a ring, called the *quotient ring* of R by I.

Theorem 17 (The first isomorphism theorem; or the fundamental homomorphism theorem for rings). If *R* and *S* are rings and $\theta: R \to S$ is a homomorphism, then

- (a) $\theta(R)$ is a subring of *S*
- (b) ker θ is an ideal of R
- (c) $R/\ker\theta \approx \theta(R)$.

In fact, if $K = \ker \theta$ then the map $\phi \colon R/K \to \theta(R), K + x \mapsto \theta(x)$ is a well-defined isomorphism.

Corollary 18. If *R* and *S* are rings and $\theta \colon R \to S$ is a surjective homomorphism, $R / \ker \theta \approx S$.

Proposition/Definition 19. If $I \triangleleft R$ then the map $\eta_I : R \rightarrow R/I$ defined by $\eta_I(x) = I + x$ for $x \in R$ is a surjective homomorphism with kernel *I*. It is called the *natural homomorphism* $R \rightarrow R/I$.

Corollary 20. Let *R* be a ring.

- (a) If $S \subseteq R$, then *S* is a subring of *R* if and only if there is a ring *T* and a homomorphism $\theta: T \to R$ so that *S* is the image of θ .
- (b) If $I \subseteq R$, then *I* is an ideal of *R* if and only if there is a ring *W* and a homomorphism $\phi \colon R \to W$ so that $I = \ker \phi$.

Theorem 21 (The second isomorphism theorem). Let *R* be a ring, let *S* be a subring of *R* and let *I* be an ideal of *R*. Then

- (a) the set $S + I = \{s + i : s \in S, i \in I\}$ is a subring of *R* which contains *I*, and $I \triangleleft S + I$;
- (b) $S \cap I \lhd S$; and
- (c) $(S+I)/I \approx S/(S \cap I)$

Theorem 22 (The third isomorphism theorem). Let *R* be a ring and let *I* and *J* be ideals of *R* with $I \subseteq J$. Then

- (a) $I \lhd J$;
- (b) $J/I \triangleleft R/I$; and
- (c) $(R/I)/(J/I) \approx R/J$.

Theorem 23 (The correspondence theorem). If *I* is an ideal of a ring *R*, then the maps

 α : {subrings *S* of *R* with $I \subseteq S$ } \rightarrow {all subrings of *R*/*I*}, $\alpha(S) = S/I$ and

 $\widetilde{\alpha}$: {ideals *J* of *R* with $I \subseteq J$ } \rightarrow {all ideals of *R*/*I*}, $\widetilde{\alpha}(J) = J/I$ are both well-defined bijections.

Proposition 24. Let *R* be a ring.

- (a) R[x] is a ring.
- (b) *R*[*x*] is unital if and only if *R* is unital; and in that case we have 1_{*R*[*x*]} = (1_{*R*}, 0, 0, ...).
- (c) The map $\theta \colon R \to R[x], \alpha \mapsto (\alpha, 0, 0, 0, ...)$ is an injective homomorphism, so *R* is isomorphic to the subring of constant polynomials $\theta(R) = \{(\alpha, 0, 0, 0, ...) \colon \alpha \in R\}.$
- (d) R[x] is commutative if and only if R is commutative.

Proposition 25. If *R* is a ring and $f, g \in R[x]$ are non-zero, then

- (a) $\deg(f + g) \le \max\{\deg(f), \deg(g)\}$ (provided $f + g \ne 0$); and
- (b) $\deg(fg) \le \deg(f) + \deg(g) \text{ (provided } fg \ne 0).$

Proposition 26. Let *R* be a ring. If $\alpha \in R$ and $f = \sum_{i=0}^{n} a_i x^i \in R[x]$, then let $f(\alpha) = \sum_{i=0}^{n} a_i \alpha^i$. The map $\varepsilon_{\alpha} \colon R[x] \to R$, $f \mapsto f(\alpha)$ is a homomorphism.

Proposition 27. Let *R* be an integral domain.

- (a) If *u* and *v* are units of *R*, then *u* is an associate of *v*.
- (b) If *u* is a unit of *R* and $b \in R$, then u|b.

Proposition 28. Let *R* be an integral domain. If $a, b \in R$, then *a* and *b* are associates if and only if a = bu for some unit $u \in R$.

Proposition 29. The relation || given by

 $a \parallel b \iff a \text{ and } b \text{ are associates}$

is an equivalence relation on an integral domain *R*.

Proposition 30. If $a \parallel a'$ and $b \parallel b'$, then $a \mid b \iff a' \mid b'$.

Theorem 31 (Gauss' lemma). If *R* is a unique factorisation domain, then so is the polynomial ring R[x].

Proposition 32. Let *R* be an integral domain and let $a, b \in R$. If d_1 and d_2 are gcds of *a* and *b*, then $d_1 \parallel d_2$.

Lemma 33. Let *R* be a unique factorisation domain and let $a, b \in R$ be non-zero and non-units in *R*. Write $a = p_1 p_2 \dots p_n$ where each p_i is an irreducible element of *R*. Then

 $b|a \iff b \parallel c$ where *c* is a product of some of $p_1, p_2, ..., p_n$.

Theorem 34. If *R* is a unique factorisation domain then for any $a, b \in R$, there is a gcd of *a* and *b* in *R*.

Proposition 35. Let *R* be a commutative unital ring. If $a_1, a_2, ..., a_n \in R$ then the set

 $\langle a_1, a_2, \dots, a_n \rangle = \{a_1 x_1 + a_2 a_2 + \dots + a_n x_n \colon x_1, \dots, x_n \in R\}$

is the smallest ideal of *R* containing $a_1, a_2, ..., a_n$.

Proposition 36. Let *R* be an integral domain. For $a, b \in R$, the following are equivalent:

- (a) *a*|*b*
- (b) $b \in \langle a \rangle$
- (c) $\langle b \rangle \subseteq \langle a \rangle$

Corollary 37. If *R* is an integral domain and $a, b \in R$, then

$$a \parallel b \iff \langle b \rangle = \langle a \rangle.$$

Proposition 38. If *R* is an integral domain and $a, b, d \in R$ with $\langle a, b \rangle = \langle d \rangle$, then *d* is a gcd of *a* and *b*.

Proposition 39. If *R* is a principal ideal domain and $a, b \in R$, then

- (a) For any $d \in R$, $\langle a, b \rangle = \langle d \rangle \iff d$ is a gcd of a and b.
- (b) *a* and *b* have a gcd in *R*.
- (c) If $c \in R$ and d is a gcd of a and b, then the equation

$$ax + by = c$$

has a solution $x, y \in R$ if and only if d | c.

Theorem 40. Let *R* be a principal ideal domain and suppose that $I_1, I_2, I_3, ...$ are ideals of *R* with $I_1 \subseteq I_2 \subseteq I_3 \subseteq ...$ Then there is $n \ge 1$ so that $I_n = I_{n+1} = I_{n+2} = ...$

Corollary 41. If *R* is a principal ideal domain and $a \in R$ with $a \neq 0$ and $a \notin \text{Units}(R)$, then there are $p_1, \dots, p_n \in \text{Irred}(R)$ such that $a = p_1 \dots p_n$.

Lemma 42. Let *R* be an integral domain and let $p \in \text{Irred}(R)$.

(a) If $c \in R$ then $c | p \iff c || 1$ or c || p.

(b) If $a \in R$ and $p \not| a$ then 1 is a gcd of a and p.

Proposition 43. Let *R* be a principal ideal domain and let *p* be an irreducible element of *R*.

- (a) If $a, b \in R$ and p|ab, then p|a or p|b.
- (b) If $a_1, \ldots, a_n \in R$ and $p | a_1 \ldots a_n$, then $p | a_i$ for some $i \in \{1, 2, \ldots, n\}$.

Lemma 44. If *R* is an integral domain and $p, q \in \text{Irred}(R)$, then $p|q \iff p \parallel q$.

Corollary 45. If *R* is a principal ideal domain and $p_1, ..., p_n$ and $q_1, ..., q_m$ are irreducible elements of *R* with $p_1 ... p_n = q_1 ... q_m$, then n = m and up to reordering, $p_i \parallel q_i$ for $1 \le i \le n$.

Corollary 46. Any principal ideal domain is a unique factorisation domain.

Proposition 47. If *F* is a field, and *f* and *g* are non-zero polynomials in F[x], then there exist polynomials *q* and *r* in F[x] so that

f = gq + r and either r = 0, or $r \neq 0$ and deg(r) < deg(g).

Theorem 48. Let *R* be a ring. If *R* is a Euclidean domain, then *R* is a principal ideal domain.

Proposition 49. Let *R* be an integral domain. If $a, b \in R$, let CDivs $(a, b) = \{c \in R : c | a \text{ and } c | b\}$, the set of common divisors of *a* and *b*, and let Gcds $(a, b) = \{c \in R : c \text{ is a gcd of } a \text{ and } b\}$.

- (a) If $a, b, s, t \in R$ and CDivs(a, b) = CDivs(s, t) then Gcds(a, b) =Gcds(s, t).
- (b) If *c* is a gcd of *a* and *b*, then $Gcds(a, b) = \{associates of c\}$.

Proposition 50. Let *R* be an integral domain. If $a, b, q, r \in R$ and a = bq + r, then CDivs(a, b) = CDivs(b, r) and Gcds(a, b) = Gcds(b, r).

Proposition 51. Let *R* be an integral domain. If $a \in R$ then *a* is a gcd of *a* and 0_R .

The Euclidean algorithm Let *R* be a Euclidean domain with Euclidean function $d: R^* \to \mathbb{N}_0$ and let $a_1, b_1 \in R$. Start with i = 1, and then:

- (1) If $b_i = 0$ then output a_i and stop.
- (2) Otherwise, write $a_i = b_i q_i + r_i$ for some $q_i, r_i \in R$ with either $r_i = 0$, or $r_i \neq 0$ and $d(r_i) < d(b_i)$. Take $a_{i+1} = b_i$ and $b_{i+1} = r_i$, increment *i* and go back to step (1).

Theorem 52. If *R* is a Euclidean domain, then the Euclidean algorithm always terminates, and outputs a gcd of the input values a_1 and b_1 .

Proposition 53. If a_i , b_i are as in the Euclidean algorithm then there are $x_i, y_i \in R$ with $a_i = a_1x_i + b_1y_i$, and we can compute x_i and y_i explicitly.

Theorem 54. If *R* is an integral domain, then there is a field *F* which is a field of fractions for *R*.

Proposition 55. Let *R* be a commutative unital ring. Then *R* is a field if and only if {0} and *R* are the only ideals of *R*.

Theorem 56. If *R* is a commutative unital ring and $I \triangleleft R$, then *R*/*I* is a field if and only if *I* is a maximal ideal of *R*.

Lemma 57. If *R* is an integral domain and $a \in R$, then

 $a \in \text{Units}(R) \iff \langle a \rangle = R.$

Theorem 58. Let *R* be a principal ideal domain. If $I \triangleleft R$ with $I \neq \{0\}$, then *I* is a maximal ideal if and only if $I = \langle a \rangle$ for some $a \in \text{Irred}(R)$.

Corollary 59. If *F* is a field and $f \in F[x]$, then $F[x]/\langle f \rangle$ is a field if and only if $f \in \text{Irred}(F[x])$.

Theorem 60. Let *F* be a field. If $f \in \text{Irred}(F[x])$ then there is a field extension *K* of *F* and $\alpha \in K$ so that $f(\alpha) = 0$. In fact, we can take $K = F[x]/\langle f \rangle$ and $\alpha = \langle f \rangle + x$.

Corollary 61. If $g \in F[x]$ is any polynomial, then there is a field extension *K* of *F*, and $\alpha \in K$ so that $g(\alpha) = 0$.

Lemma 62. If $f \in \text{Irred}(F[x])$ and *K* is a field extension of *F* containing an element $\alpha \in K$ with $f(\alpha) = 0$, then for $g \in F[x]$ we have $g(\alpha) = 0 \iff g \in \langle f \rangle$.

Theorem 63. If $f \in \text{Irred}(F[x])$ and *K* is a field extension of *F* containing an element $\alpha \in K$ with $f(\alpha) = 0$, then *K* is a field extension of $F[x]/\langle f \rangle$.

Theorem 64. If $f \in \text{Irred}(F[x])$ and n = deg(f), and $\alpha = \langle f \rangle + x \in F[x]/\langle f \rangle$, then every $y \in F[x]/\langle f \rangle$ can be written as

 $y = b_0 + b_1 \alpha + \dots + b_{n-1} \alpha^{n-1}$

for a unique choice of $b_0, b_1, \ldots, b_{n-1} \in F$. Hence

 $F[x]/\langle f \rangle = \{r(\alpha) : r \in F[x], r = 0 \text{ or } r \neq 0 \text{ and } \deg(r) < n\}.$

Corollary 65. If $p \in \mathbb{N}$ is prime and $f \in \operatorname{Irred}(\mathbb{Z}_p[x])$, then $\mathbb{Z}_p[x]/\langle f \rangle$ is a finite field of order p^n , where $n = \deg(f)$.

Lemma 66. Let *L* be a field.

- (a) If \mathcal{K} is a non-empty family of subfields of *L*, then $\bigcap \mathcal{K}$ is a subfield of *L*.
- (b) If *F* is a subfield of *L* and $S \subseteq L$, then

 $F(S) = \bigcap \{L: L \text{ is a subfield of } K \text{ with } F \cup S \subseteq L\}$

is the smallest subfield of *L* containing $F \cup S$.

Lemma 67. If $f \in F[x]$ and $f \neq 0$ then there is a unique polynomial $m \in F[x]$ so that *m* is monic and m || f.

Proposition 68. If *K* is a field extension of *F* and $\alpha \in K$, and α is algebraic over *F*, then there is a unique monic polynomial $m_{\alpha} \in F[x]$ so that for every $f \in F[x]$ with $f \neq 0$, we have

$$f(\alpha) = 0 \iff m_{\alpha}|f.$$

We call m_{α} the *minimum polynomial of* α *over* F. Moreover, $m_{\alpha} \in \operatorname{Irred}(F[x])$ and $F(\alpha) \approx F[x]/\langle m_{\alpha} \rangle$.

Proposition. If K : F then K is a vector space over F, where vector addition is given by addition in K, and scalar addition is given by multiplication in K (after identifying F with a subfield of K).

Theorem 69. Let K : F and suppose that $\alpha \in K$ is algebraic over F, and let m_{α} be the minimum polynomial of α over F. Then the set $\{1, \alpha, \alpha^2, ..., \alpha^{n-1}\}$ is a basis for $F(\alpha)$ over F, where $n = \deg(m_{\alpha})$, and so

 $[F(\alpha):F] = \deg(m_{\alpha}).$

Theorem 70 (The Tower Law). If *L* : *K* and *K* : *F* then

 $[L:F] = [L:K] \cdot [K:F].$

Theorem 71. If P = (x, y) is a constructible point in the plane, then $[\mathbb{Q}(x, y) : \mathbb{Q}] = 2^k$ for some $k \in \mathbb{N}_0$.

Corollary 72 (Impossibility of duplicating the cube). The point $(\sqrt[3]{2}, 0)$ is not constructible.

Corollary 73 (Impossibility of squaring the circle). The point $(\frac{1}{\sqrt{\pi}}, 0)$ is not constructible.

Lemma 74. The polynomial $x^3 - 3x - 1$ is in Irred($\mathbb{Q}[x]$).

Corollary 75 ($\frac{\pi}{3}$ cannot be trisected with a ruler and compasses). The point ($\cos(\frac{\pi}{3}), \sin(\frac{\pi}{3})$) is not constructible.

Theorem 76. The set $\mathbb{K} = \{x \in \mathbb{R} : (x, 0) \text{ is constructible}\}\$ is a sub-field of \mathbb{R} with $\mathbb{Q} \subseteq \mathbb{K}$. Moreover, if $x \in \mathbb{K}$ with x > 0 then $\sqrt{x} \in \mathbb{K}$.