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Proposition 1. Let (R,+, ·) be a ring.

(a) −0 = 0 and −(−x) = x for every x ∈ R.

(b) If x, y, z ∈ R then x+z = y+z =⇒ x = y and z+x = z+y =⇒
x = y .

(c) If n ∈Z and x ∈ R, define

nx =


x +·· ·+x (n times) if n > 0,

0 if n = 0,

−x −·· ·−x (−n times) if n < 0.

Then (n+m)x = nx+mx and n(mx) = (nm)x for all n,m ∈Z
and x ∈ R.

Proposition 2. If R is a ring, then 0R ·x = 0R and x ·0R = 0R for all
x ∈ R.

Proposition 3. (a) If R is a unital ring and x ∈ R is invertible,
then x is not a zero-divisor.

(b) If R is a division ring, then R contains no zero-divisors.

Lemma 4. If R is a unital ring and a, x,b ∈ R with ax = 1R and
xb = 1R , then x is invertible and a = b = x−1.

Lemma 5. If R is a ring with no zero-divisors, then

x y = 0 =⇒ x = 0 or y = 0

for all x, y ∈ R.

Proposition 6 (Cancellation in a ring with no zero-divisors). If R
is a ring with no zero-divisors and x ∈ R×, then for any a, x,b ∈ R,

(a) ax = bx =⇒ a = b, and

(b) xa = xb =⇒ a = b.
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Theorem 7. If R is a finite unital ring with no zero-divisors, then
R is a division ring.

Corollary 8. (a) If R is a finite unital ring, then R is a division
ring if and only if R has no zero-divisors.

(b) If R is a finite commutative unital ring, then R is a field if
and only if R has no zero-divisors.

Lemma 9. If n ∈Nwith n > 1, then n is prime if and only if

∀k,` ∈Z, n |k` =⇒ n |k or n |`.

Corollary 10. The ring (Zn,⊕,¯) is a field if and only if n is prime.

Theorem 11. If (R,+, ·) is a ring and S ⊆ R, then the following are
equivalent:

(a) S is a subring of R;

(b) (S,+) is a subgroup of (R,+) and S is closed under multipli-
cation;

(c) S 6= ;, and for all x, y ∈ S we have x − y ∈ S and x y ∈ S.

Proposition 12. Let R and S be rings, and let θ : R → S be a (ring)
homomorphism.

(a) θ(0R) = 0S

(b) θ(−x) =−θ(x) for all x ∈ R

(c) θ(x − y) = θ(x)−θ(y) for all x, y ∈ R

(d) θ(mx) = mθ(x) for all m ∈Z and x ∈ R

Proposition 13. Let R and S be rings, and let θ : R → S be a (ring)
homomorphism. The image of θ, that is, the set

θ(R) = {θ(x) : x ∈ R}

is a subring of S.
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Proposition 14. Let R and S are rings, and let θ : R → S be a
(ring) homomorphism.

(a) If R is a unital ring, then so is θ(R).

(b) If R is a commutative ring, then so is θ(R).

(c) θ is injective if and only if kerθ = {0R}.

Proposition 15. If R and S are rings and θ : R → S is a (ring) ho-
momorphism, then kerθ is an ideal in R.

Theorem/Definition 16. If I is an ideal of a ring R, then there
are two well-defined operations on set R/I = {I +x : x ∈ R} given
by

(I +x)+ (I + y) = I + (x + y) and (I +x)(I + y) = I +x y

which turn R/I into a ring, called the quotient ring of R by I .

Theorem 17 (The first isomorphism theorem; or the fundamen-
tal homomorphism theorem for rings). If R and S are rings and
θ : R → S is a homomorphism, then

(a) θ(R) is a subring of S

(b) kerθ is an ideal of R

(c) R/kerθ ≈ θ(R).

In fact, if K = kerθ then the map φ : R/K → θ(R), K +x 7→ θ(x) is
a well-defined isomorphism.

Corollary 18. If R and S are rings and θ : R → S is a surjective
homomorphism, R/kerθ ≈ S.

Proposition/Definition 19. If I CR then the map ηI : R → R/I
defined by ηI (x) = I + x for x ∈ R is a surjective homomorphism
with kernel I . It is called the natural homomorphism R → R/I .
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Corollary 20. Let R be a ring.

(a) If S ⊆ R, then S is a subring of R if and only if there is a ring T
and a homomorphism θ : T → R so that S is the image of θ.

(b) If I ⊆ R, then I is an ideal of R if and only if there is a ring W
and a homomorphism φ : R →W so that I = kerφ.

Theorem 21 (The second isomorphism theorem). Let R be a
ring, let S be a subring of R and let I be an ideal of R. Then

(a) the set S + I = {s + i : s ∈ S, i ∈ I } is a subring of R which
contains I , and I CS + I ;

(b) S ∩ I CS; and

(c) (S + I )/I ≈ S/(S ∩ I )

Theorem 22 (The third isomorphism theorem). Let R be a ring
and let I and J be ideals of R with I ⊆ J . Then

(a) I C J ;

(b) J/I CR/I ; and

(c) (R/I )/(J/I ) ≈ R/J .

Theorem 23 (The correspondence theorem).
If I is an ideal of a ring R, then the maps

α : {subrings S of R with I ⊆ S} → {all subrings of R/I }, α(S) = S/I

and

α̃ : {ideals J of R with I ⊆ J } → {all ideals of R/I }, α̃(J ) = J/I

are both well-defined bijections.
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Proposition 24. Let R be a ring.

(a) R[x] is a ring.

(b) R[x] is unital if and only if R is unital; and in that case we
have 1R[x] = (1R ,0,0, . . . ).

(c) The map θ : R → R[x], α 7→ (α,0,0,0, . . . ) is an injective ho-
momorphism, so R is isomorphic to the subring of constant
polynomials θ(R) = {(α,0,0,0, . . . ) : α ∈ R}.

(d) R[x] is commutative if and only if R is commutative.

Proposition 25. If R is a ring and f , g ∈ R[x] are non-zero, then

(a) deg( f + g ) ≤ max{deg( f ),deg(g )} (provided f + g 6= 0); and

(b) deg( f g ) ≤ deg( f )+deg(g ) (provided f g 6= 0).

Proposition 26. Let R be a ring. Ifα ∈ R and f =∑n
i=0 ai x i ∈ R[x],

then let f (α) = ∑n
i=0 aiα

i . The map εα : R[x] → R, f 7→ f (α) is a
homomorphism.

Proposition 27. Let R be an integral domain.

(a) If u and v are units of R, then u is an associate of v .

(b) If u is a unit of R and b ∈ R, then u|b.

Proposition 28. Let R be an integral domain. If a,b ∈ R, then a
and b are associates if and only if a = bu for some unit u ∈ R.

Proposition 29. The relation ‖ given by

a ‖b ⇐⇒ a and b are associates

is an equivalence relation on an integral domain R.

Proposition 30. If a ‖a′ and b ‖b′, then a|b ⇐⇒ a′|b′.
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Theorem 31 (Gauss’ lemma). If R is a unique factorisation do-
main, then so is the polynomial ring R[x].

Proposition 32. Let R be an integral domain and let a,b ∈ R.
If d1 and d2 are gcds of a and b, then d1 ‖d2.

Lemma 33. Let R be a unique factorisation domain and let a,b ∈
R be non-zero and non-units in R. Write a = p1p2 . . . pn where
each pi is an irreducible element of R. Then

b|a ⇐⇒ b ‖c where c is a product of some of p1, p2, . . . , pn.

Theorem 34. If R is a unique factorisation domain then for any
a,b ∈ R, there is a gcd of a and b in R.

Proposition 35. Let R be a commutative unital ring. If a1, a2, . . . , an ∈
R then the set

〈a1, a2, . . . , an〉 = {a1x1 +a2a2 +·· ·+anxn : x1, . . . , xn ∈ R}

is the smallest ideal of R containing a1, a2, . . . , an.

Proposition 36. Let R be an integral domain. For a,b ∈ R, the
following are equivalent:

(a) a|b
(b) b ∈ 〈a〉
(c) 〈b〉 ⊆ 〈a〉

Corollary 37. If R is an integral domain and a,b ∈ R, then

a ‖b ⇐⇒ 〈b〉 = 〈a〉.
Proposition 38. If R is an integral domain and a,b,d ∈ R with
〈a,b〉 = 〈d〉, then d is a gcd of a and b.
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Proposition 39. If R is a principal ideal domain and a,b ∈ R,
then

(a) For any d ∈ R, 〈a,b〉 = 〈d〉 ⇐⇒ d is a gcd of a and b.

(b) a and b have a gcd in R.

(c) If c ∈ R and d is a gcd of a and b, then the equation

ax +by = c

has a solution x, y ∈ R if and only if d |c.

Theorem 40. Let R be a principal ideal domain and suppose
that I1, I2, I3, . . . are ideals of R with I1 ⊆ I2 ⊆ I3 ⊆ . . . . Then there
is n ≥ 1 so that In = In+1 = In+2 = . . . .

Corollary 41. If R is a principal ideal domain and a ∈ R with
a 6= 0 and a 6∈ Units(R), then there are p1, . . . pn ∈ Irred(R) such
that a = p1 . . . pn.

Lemma 42. Let R be an integral domain and let p ∈ Irred(R).

(a) If c ∈ R then c|p ⇐⇒ c ‖1 or c ‖p.

(b) If a ∈ R and p 6 |a then 1 is a gcd of a and p.

Proposition 43. Let R be a principal ideal domain and let p be
an irreducible element of R.

(a) If a,b ∈ R and p|ab, then p|a or p|b.

(b) If a1, . . . , an ∈ R and p|a1 . . . an, then p|ai for some i ∈ {1,2, . . . ,n}.

Lemma 44. If R is an integral domain and p, q ∈ Irred(R), then
p|q ⇐⇒ p ‖q .

Corollary 45. If R is a principal ideal domain and p1, . . . , pn and
q1, . . . , qm are irreducible elements of R with p1 . . . pn = q1 . . . qm,
then n = m and up to reordering, pi ‖qi for 1 ≤ i ≤ n.
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Corollary 46. Any principal ideal domain is a unique factorisa-
tion domain.

Proposition 47. If F is a field, and f and g are non-zero poly-
nomials in F [x], then there exist polynomials q and r in F [x] so
that

f = g q + r and either r = 0, or r 6= 0 and deg(r ) < deg(g ).

Theorem 48. Let R be a ring. If R is a Euclidean domain, then R
is a principal ideal domain.

Proposition 49. Let R be an integral domain. If a,b ∈ R, let
CDivs(a,b) = {c ∈ R : c|a and c|b}, the set of common divisors
of a and b, and let Gcds(a,b) = {c ∈ R : c is a gcd of a and b}.

(a) If a,b, s, t ∈ R and CDivs(a,b) = CDivs(s, t ) then Gcds(a,b) =
Gcds(s, t ).

(b) If c is a gcd of a and b, then Gcds(a,b) = {associates of c}.

Proposition 50. Let R be an integral domain. If a,b, q,r ∈ R
and a = bq + r , then CDivs(a,b) = CDivs(b,r ) and Gcds(a,b) =
Gcds(b,r ).

Proposition 51. Let R be an integral domain. If a ∈ R then a is a
gcd of a and 0R .

The Euclidean algorithm Let R be a Euclidean domain with Eu-
clidean function d : R× →N0 and let a1,b1 ∈ R. Start with i = 1,
and then:

(1) If bi = 0 then output ai and stop.

(2) Otherwise, write ai = bi qi + ri for some qi ,ri ∈ R with either
ri = 0, or ri 6= 0 and d(ri ) < d(bi ). Take ai+1 = bi and bi+1 =
ri , increment i and go back to step (1).
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Theorem 52. If R is a Euclidean domain, then the Euclidean al-
gorithm always terminates, and outputs a gcd of the input val-
ues a1 and b1.

Proposition 53. If ai , bi are as in the Euclidean algorithm then
there are xi , yi ∈ R with ai = a1xi +b1yi , and we can compute xi

and yi explicitly.

Theorem 54. If R is an integral domain, then there is a field F
which is a field of fractions for R.

Proposition 55. Let R be a commutative unital ring. Then R is a
field if and only if {0} and R are the only ideals of R.

Theorem 56. If R is a commutative unital ring and I CR, then
R/I is a field if and only if I is a maximal ideal of R.

Lemma 57. If R is an integral domain and a ∈ R, then

a ∈ Units(R) ⇐⇒ 〈a〉 = R.

Theorem 58. Let R be a principal ideal domain. If I CR with
I 6= {0}, then I is a maximal ideal if and only if I = 〈a〉 for some
a ∈ Irred(R).

Corollary 59. If F is a field and f ∈ F [x], then F [x]/〈 f 〉 is a field
if and only if f ∈ Irred(F [x]).

Theorem 60. Let F be a field. If f ∈ Irred(F [x]) then there is a
field extension K of F and α ∈ K so that f (α) = 0. In fact, we can
take K = F [x]/〈 f 〉 and α= 〈 f 〉+x.

Corollary 61. If g ∈ F [x] is any polynomial, then there is a field
extension K of F , and α ∈ K so that g (α) = 0.

Lemma 62. If f ∈ Irred(F [x]) and K is a field extension of F con-
taining an element α ∈ K with f (α) = 0, then for g ∈ F [x] we
have g (α) = 0 ⇐⇒ g ∈ 〈 f 〉.
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Theorem 63. If f ∈ Irred(F [x]) and K is a field extension of F
containing an element α ∈ K with f (α) = 0, then K is a field ex-
tension of F [x]/〈 f 〉.
Theorem 64. If f ∈ Irred(F [x]) and n = deg( f ), and α= 〈 f 〉+x ∈
F [x]/〈 f 〉, then every y ∈ F [x]/〈 f 〉 can be written as

y = b0 +b1α+·· ·+bn−1α
n−1

for a unique choice of b0,b1, . . . ,bn−1 ∈ F . Hence

F [x]/〈 f 〉 = {r (α) : r ∈ F [x], r = 0 or r 6= 0 and deg(r ) < n}.

Corollary 65. If p ∈N is prime and f ∈ Irred(Zp[x]), thenZp[x]/〈 f 〉
is a finite field of order pn, where n = deg( f ).

Lemma 66. Let L be a field.

(a) If K is a non-empty family of subfields of L, then
⋂

K is a
subfield of L.

(b) If F is a subfield of L and S ⊆ L, then

F (S) =⋂
{L : L is a subfield of K with F ∪S ⊆ L}

is the smallest subfield of L containing F ∪S.

Lemma 67. If f ∈ F [x] and f 6= 0 then there is a unique polyno-
mial m ∈ F [x] so that m is monic and m‖ f .

Proposition 68. If K is a field extension of F and α ∈ K , and α is
algebraic over F , then there is a unique monic polynomial mα ∈
F [x] so that for every f ∈ F [x] with f 6= 0, we have

f (α) = 0 ⇐⇒ mα| f .

We call mα the minimum polynomial of α over F . Moreover,
mα ∈ Irred(F [x]) and F (α) ≈ F [x]/〈mα〉.

10



Proposition. If K : F then K is a vector space over F , where
vector addition is given by addition in K , and scalar addition is
given by multiplication in K (after identifying F with a subfield
of K ).

Theorem 69. Let K : F and suppose thatα ∈ K is algebraic over F ,
and let mα be the minimum polynomial of α over F . Then the
set {1,α,α2, . . . ,αn−1} is a basis for F (α) over F , where n = deg(mα),
and so

[F (α) : F ] = deg(mα).

Theorem 70 (The Tower Law). If L : K and K : F then

[L : F ] = [L : K ] · [K : F ].

Theorem 71. If P = (x, y) is a constructible point in the plane,
then [Q(x, y) :Q] = 2k for some k ∈N0.

Corollary 72 (Impossibility of duplicating the cube). The point
( 3
p

2,0) is not constructible.

Corollary 73 (Impossibility of squaring the circle). The point
( 1p

π
,0) is not constructible.

Lemma 74. The polynomial x3 −3x −1 is in Irred(Q[x]).

Corollary 75 (π3 cannot be trisected with a ruler and compasses).
The point (cos(π3 ),sin(π3 )) is not constructible.

Theorem 76. The setK= {x ∈R : (x,0) is constructible} is a sub-
field of RwithQ⊆K. Moreover, if x ∈Kwith x > 0 then

p
x ∈K.
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