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Proposition 1. Let (R, +, ) be a ring.
(@) —0=0and —(—x) = x for every x € R.

(b) Ifx,y,ze Rthenx+z=y+z = x=yandz+x=z+y =
x=y.
(c) If ne Zand x € R, define

rx+---+x (n times) ifn>0,
nx=+40 ifn=0,
| —X— =X (—ntimes) ifn<o0.

Then (n+m)x=nx+mxand n(mx) = (nm)xforalln, me”Z
and x € R.

Proposition 2. If R is aring, then 0z-x =0z and x-0f = 0y for all
x € R.

Proposition 3. (a) If R is a unital ring and x € R is invertible,
then x is not a zero-divisor.

(b) If R is a division ring, then R contains no zero-divisors.

Lemma 4. If R is a unital ring and a, x, b € R with ax = 13 and
xb = 1, then x is invertible and a = b = x~ 1.

Lemma 5. If R is a ring with no zero-divisors, then
xy=0= x=0o0ry=0
forall x,y € R.

Proposition 6 (Cancellation in a ring with no zero-divisors). If R
is aring with no zero-divisors and x € R*, thenforany a, x, b € R,

(@A) ax=bx = a=Db, and

(b) xa=xb = a=0>b.



Theorem 7. If R is a finite unital ring with no zero-divisors, then
R is a division ring.

Corollary 8. (a) If R is a finite unital ring, then R is a division
ring if and only if R has no zero-divisors.

(b) If R is a finite commutative unital ring, then R is a field if
and only if R has no zero-divisors.

Lemma 9. If n e Nwith n > 1, then n is prime if and only if
Vk,¢e€Z, n|lklé = nlkorn|/.
Corollary 10. Thering (Z,, ®, ®) is a field if and only if n is prime.

Theorem 11. If (R, +,) isaring and S < R, then the following are
equivalent:

(@) Sisasubring of R;

(b) (S,+) is a subgroup of (R, +) and S is closed under multipli-
cation;

(c) S#¢@,andforall x,ye Swehave x—ye Sand xy € S.

Proposition 12. Let R and Sberings, andletf: R — Sbe a (ring)
homomorphism.

(@) 6(0r) =05

(b) O(—x) =—-0(x) forallxe R

(c) B(x—y)=0(x)-0(y)forall x,yeR
(d) O(mx) =m0l (x) forallme Zand x€ R

Proposition 13. Let R and S berings, andletf: R — S be a (ring)
homomorphism. The image of 0, that is, the set

O(R) ={0(x): x€ R}

is a subring of S.



Proposition 14. Let R and S are rings, and let §: R — S be a
(ring) homomorphism.

(@) If R is a unital ring, then so is 0(R).
(b) If R is a commutative ring, then so is 0 (R).
(c) 0 is injective if and only if ker 6 = {0y}.

Proposition 15. If R and S are rings and 8: R — S is a (ring) ho-
momorphism, then ker0 is an ideal in R.

Theorem/Definition 16. If [ is an ideal of a ring R, then there
are two well-defined operations on set R/I = {I+ x: x € R} given

by
I+x)+(U+y)=I+(x+y) and (U+x)I+y)=I1+xy
which turn R/I into a ring, called the quotient ring of R by I.

Theorem 17 (The first isomorphism theorem; or the fundamen-
tal homomorphism theorem for rings). If R and S are rings and
0: R — Sis ahomomorphism, then

(@) O(R) is a subring of S
(b) ker@ is an ideal of R
(c) R/ker0 =0O(R).

In fact, if K = ker6 then the map ¢: R/K — 0(R), K+ x— 0(x) is
a well-defined isomorphism.

Corollary 18. If R and S are rings and 0: R — § is a surjective
homomorphism, R/kerf = S.

Proposition/Definition 19. If / < R then the map n;: R — R/I
defined by n7;(x) = I + x for x € R is a surjective homomorphism
with kernel I. It is called the natural homomorphism R — R/ 1.
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Corollary 20. Let R be a ring.

(a) If SS R, then Sisasubringof Rifand onlyif thereisaring T
and a homomorphism 6: T — R so that S is the image of 6.

(b) If I € R, then I is an ideal of R if and only if there is a ring W
and a homomorphism ¢: R — W so that I = ker ¢.

Theorem 21 (The second isomorphism theorem). Let R be a
ring, let S be a subring of R and let I be an ideal of R. Then

(@) theset S+ 1 ={s+i:s€S, i€ l}isasubring of R which
contains I, and I < S+ [;

(b) SNI<S;and
(c) (S+D/I=S/(SNI)

Theorem 22 (The third isomorphism theorem). Let R be a ring
and let I and J be ideals of R with I < J. Then

(@ I<];
(b) J/I<R/I; and
(c) (R/ID/JI/I) =R/].

Theorem 23 (The correspondence theorem).
If I is an ideal of a ring R, then the maps

a: {subrings S of R with I < S} — {all subrings of R/I}, «a(S)=S/1
and
a: {ideals J of Rwith I € J} — {allidealsof R/I}, a(])=]/I

are both well-defined bijections.



Proposition 24. Let R be a ring.
(a) R[x]is aring.

(b) R[x] is unital if and only if R is unital; and in that case we
have lR[x] = (lR,0,0, .. )

(c) The map 0: R — R[x], a — («,0,0,0,...) is an injective ho-
momorphism, so R is isomorphic to the subring of constant
polynomials 6(R) = {(«,0,0,0,...): a € R}.

(d) R[x]is commutative if and only if R is commutative.
Proposition 25. If Ris aring and f, g € R[x] are non-zero, then
(@) deg(f + g) < max{deg(f),deg(g)} (provided f + g # 0); and

(b) deg(fg) <deg(f)+deg(g) (provided f g #0).

Proposition 26. Let Rbearing. Ifa € Rand f =Y ! a;x" € R[x],
thenlet f(a) = X" ,a;a’. The map ,: R[x] — R, f— f(a)isa
homomorphism.

Proposition 27. Let R be an integral domain.
(a) If u and v are units of R, then u is an associate of v.
(b) If uis aunitof R and b € R, then u|b.

Proposition 28. Let R be an integral domain. If a, b € R, then a
and b are associates if and only if a = bu for some unit u € R.

Proposition 29. The relation || given by
allb < aand b are associates

is an equivalence relation on an integral domain R.

Proposition 30. If a || @’ and b || b/, then a|b < d'|b'.



Theorem 31 (Gauss’ lemma). If R is a unique factorisation do-
main, then so is the polynomial ring R[x].

Proposition 32. Let R be an integral domain and let a,b € R.
If dy and d, are gcds of a and b, then d; || d».

Lemma 33. Let R be a unique factorisation domain andlet a, b €
R be non-zero and non-units in R. Write a = p;p-... p, where
each p; is an irreducible element of R. Then

bla < b | c where c is a product of some of py, py,..., pn.

Theorem 34. If R is a unique factorisation domain then for any
a,b € R, there is a gcd of a and b in R.

Proposition 35. Let R be a commutative unital ring. If a,, ay, ..., a, €
R then the set

(ay, as,...,a0,) ={mx1+arar+ -+ a,x,: x1,...,X, € R}
is the smallest ideal of R containing a,, ay, ..., a,.

Proposition 36. Let R be an integral domain. For a,b € R, the
following are equivalent:

(@) alb

(b) be(a)

(©) (b) <(a)

Corollary 37. If R is an integral domain and a, b € R, then
allb < (b)={(a).

Proposition 38. If R is an integral domain and a, b,d € R with
(a,b) =(d), then d is a gcd of a and b.



Proposition 39. If R is a principal ideal domain and a, b € R,
then

(@) Forany d € R, {a,b) =(d) < disagcd of aand b.
(b) a and b have a gcd in R.
(c) If ce Rand d is a gcd of a and b, then the equation
ax+by=c
has a solution x, y € R if and only if d|c.

Theorem 40. Let R be a principal ideal domain and suppose
that I, I», I, ... are ideals of Rwith I € I, < I3 <.... Then there
isn=1sothatl,=1,,1=1,12=....

Corollary 41. If R is a principal ideal domain and a € R with
a # 0 and a ¢ Units(R), then there are py,...p, € Irred(R) such
thata=p,...px.

Lemma 42. Let R be an integral domain and let p € Irred(R).
(@ Ifce Rthenc|p < cllorc| p.
(b) If a€ R and p fa then 1 is a gcd of a and p.

Proposition 43. Let R be a principal ideal domain and let p be
an irreducible element of R.

(@) If a,b € R and p|ab, then p|a or p|b.
(b) Ifay,...,a,€ Rand pla, ... a,, then p|a; forsome i€ {1,2,...,n}.

Lemma 44. If R is an integral domain and p, g € Irred(R), then
prlg = plq.

Corollary 45. If R is a principal ideal domain and py,..., p, and
qi,...,qm are irreducible elements of R with py...p, = q1...Gm,
then n = m and up to reordering, p; || g; for1 <i < n.
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Corollary 46. Any principal ideal domain is a unique factorisa-
tion domain.

Proposition 47. If F is a field, and f and g are non-zero poly-
nomials in F[x], then there exist polynomials g and r in F[x] so
that

f=gqg+r and eitherr=0,orr#0anddeg(r)<deg(g).

Theorem 48. Let R be aring. If R is a Euclidean domain, then R
is a principal ideal domain.

Proposition 49. Let R be an integral domain. If a,b € R, let
CDivs(a,b) = {c € R: c|a and c|b}, the set of common divisors
of a and b, and let Geds(a, b) = {c€ R: cis a gcd of a and b}.

(a) If a, b, s, t € R and CDivs(a, b) = CDivs(s, t) then Geds(a, b) =
Gceds(s, 1).

(b) If cis a gcd of a and b, then Gceds(a, b) = {associates of c}.

Proposition 50. Let R be an integral domain. If a,b,q,r € R
and a = bqg + r, then CDivs(a, b) = CDivs(b, r) and Gcds(a, b) =
Gceds(b, r).

Proposition 51. Let R be an integral domain. If a € R then a is a
gcd of a and 0p.

The Euclidean algorithm Let R be a Euclidean domain with Eu-
clidean function d: R* — Ny and let a;, b; € R. Start with i =1,
and then:

(1) If b; = 0 then output a; and stop.

(2) Otherwise, write a; = b;q; + r; for some q;, r; € R with either
ri=0,orr; Z0and d(r;) < d(b;). Take a;,; = b; and b;;, =
r;, increment i and go back to step (1).
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Theorem 52. If R is a Euclidean domain, then the Euclidean al-
gorithm always terminates, and outputs a gcd of the input val-
ues a; and b;.

Proposition 53. If a;, b; are as in the Euclidean algorithm then
there are x;, y; € R with a; = a,x; + b, y;, and we can compute x;
and y; explicitly.

Theorem 54. If R is an integral domain, then there is a field F

which is a field of fractions for R.

Proposition 55. Let R be a commutative unital ring. Then R is a
field if and only if {0} and R are the only ideals of R.

Theorem 56. If R is a commutative unital ring and I < R, then
R/Iis afield if and only if I is a maximal ideal of R.

Lemma 57. If R is an integral domain and a € R, then
a € Units(R) < {(a) = R.

Theorem 58. Let R be a principal ideal domain. If I << R with
I # {0}, then [ is a maximal ideal if and only if I = (a) for some
a € Irred(R).

Corollary 59. If F is a field and f € F[x], then F[x]/{f) is a field
if and only if f € Irred(F[x]).

Theorem 60. Let F be a field. If f € Irred(F[x]) then there is a
field extension K of F and a € K so that f(«a) = 0. In fact, we can
take K = F[x]/{f) and a = (f) + x.

Corollary 61. If g € F[x] is any polynomial, then there is a field
extension K of F, and a € K so that g(a) =0.

Lemma62. If f € Irred(F[x]) and K is a field extension of F con-
taining an element a € K with f(a) = 0, then for g € F[x] we
have g(a) =0 < ge(f).



Theorem 63. If f € Irred(F[x]) and K is a field extension of F
containing an element a € K with f(a) =0, then K is a field ex-
tension of F[x]/(f).

Theorem 64. If f € Irred(F[x]) and n =deg(f),and a =(f)+x€
F[x]/{f), then every y € F[x]/{f) can be written as

y=b0+b1a+°--+bn_1a”_1
for a unique choice of by, by,...,b,_1 € F. Hence
Flx]/{f)={r(a): re F[x], r=0orr # 0 and deg(r) < nj}.

Corollary65. If p € Nis prime and f € Irred(Z,[x]), then Z ,[x]/{f)
is a finite field of order p”, where n = deg(f).

Lemma 66. Let L be a field.

(@) If £ is a non-empty family of subfields of L, then £ is a
subfield of L.

(b) If F is a subfield of L and S < L, then
F(S) = ){L: Lis a subfield of K with FUS < L}
is the smallest subfield of L containing F U S.

Lemma 67. If f € F[x] and f # 0 then there is a unique polyno-
mial m € F[x] so that m is monic and m|| f.

Proposition 68. If K is a field extension of F and a € K, and « is
algebraic over F, then there is a unique monic polynomial m, €
F[x] so that for every f € F[x] with f # 0, we have

fla)=0 = my,lf.

We call m, the minimum polynomial of « over F. Moreover,
m, € Irred(F[x]) and F(a) = F[x]/{m,).
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Proposition. If K : F then K is a vector space over F, where
vector addition is given by addition in K, and scalar addition is
given by multiplication in K (after identifying F with a subfield
of K).

Theorem 69. Let K : F and suppose that a € K is algebraic over F,
and let m, be the minimum polynomial of a over F. Then the
set{l,a,a?,...,a" '}1isabasis for F(a) over F, where n = deg(my),
and so

[F(a): F] =deg(my).

Theorem 70 (The Tower Law). If L: K and K : F then
[L:F]=[L:K]-[K:F].

Theorem 71. If P = (x, y) is a constructible point in the plane,
then [Q(x, y) : Q] = 2 for some k € Nj,.

Corollary 72 (Impossibility of duplicating the cube). The point
(v/2,0) is not constructible.

Corollary 73 (Impossibility of squaring the circle). The point
(#, 0) is not constructible.

Lemma 74. The polynomial x*> —3x — 1 is in Irred (Q[x]).

Corollary 75 (5 cannot be trisected with a ruler and compasses).
The point (cos(%), sin(%)) is not constructible.

Theorem 76. The set K = {x € R: (x,0) is constructible} is a sub-
field of R with Q < K. Moreover, if x € K with x > 0 then /x € K.
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