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A (non-examinable) proof of Gauss’ lemma

We want to prove:

Gauss’ lemma. If R is a UFD, then R[x] is a UFD.

We know that if F is a field, then F [x] is a UFD (by Proposition 47, Theorem 48
and Corollary 46). In outline, our proof of Gauss’ lemma will say that if F is a field of
fractions of R, then any polynomial f ∈ R[x] is in the UFD F [x], and so can be written as
a product of irreducible factors in an essentially unique manner. The reason this simple
argument doesn’t work is that it produces factors of f in Irred(F [x]), but not necessarily
in Irred(R[x]), and we only get uniqueness up to associates in F [x], which is weaker than
uniqueness up to associates in R[x]. It turns out that the way to get around this difficulty
is to consider primitive polynomials.

Throughout, let R be a UFD.

Definition. We say that a polynomial f ∈ R[x] is primitive if

d ∈ R×, d|f =⇒ d ∈ Units(R).

This means that the only common divisors of the coefficients of f are the units of R.

For example, 15x3 − 6x+ 8 is a primitive polynomial in Z[x] since the only common
divisors of 15, 0,−6, 8 are ±1.

On the other hand, f = 24x3− 18 is a polynomial in Z[x] which is not primitive since

6 ∈ Z× and 6|f , but 6 is not a unit in Z. In fact, we have f = af̃ where a = 6 and

f̃ = 4x3 − 3 which is primitive; and apart from sign changes (that is, up to associates
in Z) this is the only way to factor out a primitive polynomial from f . This is typical:

Lemma A.1. (a) If f ∈ R[x] with f 6= 0, then f = af̃ for some a ∈ R× and some

primitive polynomial f̃ ∈ R[x].

(b) If f̃ and g̃ are primitive polynomials in R[x] and a, b ∈ R× with af̃ = bg̃, then a‖b
in R.

Proof. (a) Suppose that f = a0 + · · · + anx
n and let a be a gcd of a0, a1, . . . , an in R

(this exists, since R is a UFD). Since f 6= 0 we have a 6= 0, and a|f so f = af̃ for

some f̃ ∈ R[x]. If d ∈ R× and d|f̃ then ad|f so ad|aj for each j. Since a is a gcd of the

aj’s, we have ad|a, so d|1 and so d ∈ Units(R). So f̃ is primitive.
(b) Let d be a gcd of a and b, and let a0 = a/d and b0 = b/d. Then a0 and b0 have

gcd 1, and a0|a0f̃ and a0f̃ = b0g̃, so a0|b0g̃. Since a0 and b0 have gcd 1, it follows that
a0|g̃. Since g̃ is primitive, a0 ∈ Units(R). Similarly, b0 ∈ Units(R). So a0b

−1
0 ∈ Units(R),

and a = a0b
−1
0 b. So a‖b in R.

This factorisation f = af̃ is at the heart of what follows. The idea is to deal with
the factorisation of a, which is in the UFD R, and the factorisation of the primitive
polynomial f̃ , separately. For the second part, we first need to establish some properties
of primitive polynomials.
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Proposition A.2. If f, g ∈ R[x] are both primitive, then fg is primitive.

Proof. Suppose that f, g ∈ R[x] are both primitive, but fg is not primitive. Then there
is d ∈ R× with d|fg so that d is not a unit. Since d ∈ R, which is a UFD, there is
p ∈ Irred(R) so that p|d. So p|fg but since f and g are primitive and p is not a unit, we
must have p - f and p - g.

Let us write f = a0 + a1x + · · · + anx
n, g = b0 + b1x + · · · + bmx

m and fg =
c0 + c1x + · · · + cn+mx

n+m. Then p|fg, so p|ck for every k. On the other hand, p - f so
p - ai for some i, and p - g so p - bj for some j.

Let r = min{i : 0 ≤ i ≤ n, p - ai} and s = min{j : 0 ≤ j ≤ m, p - bj}. Consider

cr+s = a0br+s + a1br+s−1 + · · ·+ ar−1bs+1︸ ︷︷ ︸
call this α

+arbs + ar+1bs−1 + · · ·+ ar+sb0︸ ︷︷ ︸
call this β

.

Since p|ai for i < r we have p|α, and since p|bj for j < s we have p|β, and we know that
p|cr+s. So p|arbs = cr+s − α − β, so p|ar or p|bs by Proposition 43(a). But p - ar and
p - bs by the definition of r and s, so this is a contradiction.

Lemma A.3. Let R be a UFD with field of fractions F , and let g ∈ F [x] with g 6= 0.
There is u ∈ F× so that g̃ = ug is a primitive polynomial in R[x].

Proof. Since F is a field of fractions of R, the coefficients of g are all of the form aib
−1
i

where ai ∈ R and bi ∈ R× for 0 ≤ i ≤ n, where n = deg(g). Let b = b0b1 . . . bn be the
product of the bi’s; then b ∈ R× and bg ∈ R[x]. By Lemma A.1, there is a ∈ R× so that
bg = ag̃ for some primitive g̃ ∈ R[x], and taking u = ba−1 ∈ F× gives g̃ = ug.

The next result shows that for primitive polynomials, we get the same answers to the
questions “are these associates” or “is this irreducible” whether work in R[x] or in F [x].

Proposition A.4. Let R be a UFD with field of fractions F .

(a) If f, g ∈ R[x] and f and g are primitive with f‖g in F [x], then f‖g in R[x].

(b) If f ∈ R[x] and f is primitive, then f ∈ Irred(R[x]) ⇐⇒ f ∈ Irred(F [x]).

Proof. (a) If f‖g in F [x] then there is α ∈ Units(F [x]) = F× so that g = αf . Since F
is a field of fractions of R, we have α = ab−1 for some a, b ∈ R×. Hence af = bg. By
Lemma A.1(b), a‖b in R, so α = ab−1 ∈ Units(R). Since g = αf and α ∈ Units(R) =
Units(R[x]), we have f‖g in R[x].

(b) Suppose f ∈ R[x] and f is primitive. We’ll prove the equivalent statement:
f 6∈ Irred(R[x]) ⇐⇒ f 6∈ Irred(F [x]).

If f 6∈ Irred(R[x]) then f = gh for some g, h ∈ R[x] which are not in Units(R[x]).
Since f is primitive, f 6= 0. So g 6= 0. If g ∈ Units(F [x]) = F× then g ∈ R×. Since g|f
and f is primitive, we have g ∈ Units(R) = Units(R[x]), which is a contradiction. So g is
not a unit in F [x], and neither is h for the same reasons, and f = gh. So f 6∈ Irred(F [x]).

Conversely, if f 6∈ Irred(F [x]) then f = gh for some g, h ∈ F [x] which are not
in Units(F [x]). Since f 6= 0 we have g, h 6= 0, so by Lemma A.3, there are u, v ∈ F× so

that g̃ = ug and h̃ = vh are both primitive polynomials in R[x]. By Proposition A.2, g̃h̃

is also a primitive polynomial in R[x]. Now g̃h̃ = (ug) · (vh) = uvf , so g̃h̃‖f in F [x], so

by (a), g̃h̃‖f in R[x]. Since g̃ and h̃ are primitive, they are not units in R, so they are

not units in R[x]. So g̃h̃ 6∈ Irred(R[x]), so f 6∈ Irred(R[x]).
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Proof of Gauss’ lemma. Let f ∈ R[x] be non-zero with f 6∈ Units(R[x]). We first show
that f is a product of elements of Irred(R[x]). By Lemma A.1(a), there is a ∈ R× so that

f = af̃ where f̃ ∈ R[x] is primitive. Since R is a UFD, we can factorise a as a product
of elements of Irred(R), and Irred(R) ⊆ Irred(R[x]). So it only remains to factorise the

primitive polynomial f̃ .
Since F [x] is a UFD, we have f̃ = p1p2 . . . pn for some pi ∈ Irred(F [x]). By Lemma A.3,

each pi is an associate in F [x] of a primitive polynomial p̃i ∈ R[x]. So f̃‖p̃1p̃2 . . . p̃n in F [x].

But p̃1p̃2 . . . p̃n is primitive by Proposition A.2, so by Proposition A.4(a), f̃‖p̃1p̃2 . . . p̃n
in R[x], and multiplying p̃1 by a unit in R if necessary (to get another primitive polynomial
in R[x] which is an associate of p1 in F [x]), we have f = p̃1p̃2 . . . p̃n.

In fact, each p̃i is in Irred(R[x]). Here’s why: each pi is in Irred(F [x]) and pi‖p̃i
in F [x], so p̃i ∈ Irred(F [x]). So by Proposition A.4(b), p̃i ∈ Irred(R[x]). So we have

factorised f̃ , and hence f , as a product of polynomials in Irred(R[x]).
Now we have to establish uniqueness of such factorisations. We must show that if

p1p2 . . . pn = q1q2 . . . qm where pi, qj ∈ Irred(R[x]), then n = m and, up to reordering, we
have pi‖qi in R[x] for 1 ≤ i ≤ n.

Observe that any non-constant irreducible polynomial in R[x] must be primitive.
Reorder p1 . . . pn and q1 . . . qm so that the constant factors appear before the non-constant
(and hence primitive) factors. Then there are integers k, ` so that pi ∈ Irred(R) for i ≤ k
and pi is primitive for i > k, and qj ∈ Irred(R) for j ≤ ` and qj is primitive for j > `.
Let a = p1 . . . pk ∈ R×, let g = pk+1 . . . pn, and let b = q1 . . . q` ∈ R× and h = q`+1 . . . qm.
Then ag = bh and g and h are both primitive, by Proposition A.2. So a‖b in R, by
Lemma A.1(b). By unique factorisation in R, this gives k = ` and, up to reordering,
pi‖qi in R (and so also in R[x]) for 1 ≤ i ≤ k.

It remains to deal with the non-constant factors. By the previous paragraph, we have
pk+1 . . . pn‖qk+1 . . . qm in R[x]. But for i, j > k, each pi and qj is primitive and irreducible
in R[x], and so is also irreducible in F [x] by Proposition A.4(b). Since F [x] is a UFD,
we have n = m and up to reordering, pi‖qi in F [x] for k < i ≤ n. By Proposition A.4(a),
pi‖qi in R[x] for k < i ≤ n.

The previous two paragraphs show that n = m and up to reordering, pi‖qi in R[x] for
1 ≤ i ≤ n, as required. So R[x] is a UFD.

Remark. The name “Gauss’ lemma” may also refer to some of the results we used
along the way. For example, it may refer to Proposition A.2, or to Proposition A.4(b),
sometimes in the special case that R = Z and F = Q. This latter result states that a
primitive polynomial is irreducible over Q if and only if it is irreducible over Z.

By way of an example, let’s use this result to quickly show that f = x3 − 3x− 1 is in
Irred(Q[x]). First we’ll show that f ∈ Irred(Z[x]). If a, b ∈ Z with ax− b|f in Z[x] then
by examining the coefficient of x3 and the constant term, we see that a|1 and b| − 1 in Z,
so a, b ∈ {1,−1}, so x−1|f or x+1|f . But f(1) 6= 0 and f(−1) 6= 0, so this is impossible.
So f has no degree 1 factors in Z[x]. Moreover, f is primitive, so f has no degree 0 factors
in Z[x] apart from units. Since f has degree 3, this shows that f ∈ Irred(Z[x]). Now Q
is a field of fractions of Z and f is primitive, so f ∈ Irred(Q[x]) by Proposition A.4(b).
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