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1. (a) [7 marks] Let R be a ring and let x1, x2, y1, y2 ∈ R. State the definition of an

ideal of R, and show that if I is an ideal of R with

I + x1 = I + x2 and I + y1 = I + y2,

then

I + (x1 + y1) = I + (x2 + y2) and I + x1y1 = I + x2y2.

(b) [6 marks] State and prove the first isomorphism theorem for rings.

(c) [7 marks] Let R be a ring with no zero-divisors which contains at least two ele-

ments. Consider the subring of M2(R) given by

S =


a 0

b c

 : a, b, c ∈ R

 .

Prove that S is not isomorphic to R, and find an ideal I C S so that S/I is

isomorphic to R.

2. (a) [7 marks] For each of the following properties, EITHER give an example of a ring

with those properties, OR explain why no such ring exists. In both cases, briefly

explain why your answer is correct.

(i). A non-commutative ring with a commutative subring.

(ii). An integral domain which is not isomorphic to a subring of a field.

(iii). A unique factorisation domain containing two irreducible elements p, q so that

p|q and p 6= q.

(b) [6 marks] Let R be an integral domain. Recall that for a, b ∈ R, we write a‖b to

mean that a and b are associates in R.

Explain what it means to say that a and b are associates in R. Then show that if

x1‖x2 and y1‖y2, then x1x2‖y1y2, but we need not have (x1 + x2)‖(y1 + y2).

(c) [7 marks] Explain how you know that the ring Z[i] of Gaussian integers is a unique

factorisation domain. Then write 11 − 3i as a product of irreducible elements

of Z[i].
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3. Consider Z5[x], the ring of polynomials with coefficients in Z5, the integers modulo 5.

(a) [6 marks] Compute the gcds of x3 + 4 and x5 + 3x+ 1 in Z5[x].

(b) [7 marks] State the definition of a maximal ideal of R, and show that an ideal I

of Z5[x] is a maximal ideal if and only if I = 〈f〉 where f is an irreducible

polynomial in Z5[x].

(c) [7 marks] Prove that Z5[x]/〈x〉 ≈ Z5, and find an ideal I of Z5[x] so that Z5[x]/I

is a field but is not isomorphic to Z5.

4. (a) [7 marks] State and prove the Tower Law for field extensions.

[You can restrict attention in your proof to extensions of finite degree.]

(b) [6 marks] Suppose that K is a field extension of a field F with F ⊆ K. Prove

that if [K : F ] = 14, then there exist α, β in K so that K = F (α, β).

(c) [7 marks] Suppose that α and β are non-zero complex numbers which are algebraic

over Q. Show that if θ : Q(α)→ Q(β) is a ring homomorphism so that θ(α) = β,

then θ is an isomorphism. Must we have α = β?

5. [20 marks] In the context of ruler-and-compass constructions, state the definition of

a constructible point in the plane. Determine which of the following points are con-

structible:

(2
3
, 0), (21/3, 0)

Prove any results about ruler-and-compass constructions that you need.

[You may use general results about rings and fields from the course without proof.]
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