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Theorem 1. A mapping is bijective if and only if it is invertible.

Proposition 2. If a: S — T is invertible, then there is a unique
mapping f: T — S such that foa =tsand aof =1t7.

Proposition 3. Let * be an operation on a set S. If S contains an
identity element for #, then it is unique.

[In other words, the number of identity elements for * in S is
either 0 or 1.]

Proposition 4. Let * be an associative operation on a set S, and
suppose that S contains an identity element for *. If x € Sand x
is invertible with respect to *, then there is a unique element y €
Ssuchthatx* y=eand y* x =e.

Proposition 5. If a, § are disjoint cyclesin S, then ao 5= foa.

Fact 6. (a) Every permutation in S, is the product of a finite
number of disjoint cycles.

(b) Consequently, every permutation in S, is the product of a
finite number of transpositions.

Theorem 7. If a, € S, theno(aoc f) =c(a)o(f).
Proposition 8. If a,, ..., a; are distinct integers and k = 2, then

o((a ap ... ap)) = (-1)* .

Definition. If (G, %) is a group and H < G, then H is a subgroup
of (G, %), or H=<G,or H < (G, %), if:

(SGO) H# @
(SG1) x,ye H = x*xy€e H
(SG2) xe H = x'e H



Theorem 9. Let (G, *) be a group with identity element e, and
let H be a subgroup of G.

(@) The mapping *y: Hx H — H given by x xy y = x * y for
x,y € H is a well-defined operation on H such that (H, * y)
is a group.

(b) e€ H, and e is the identity element of (H, * )

(c) if x € H, then the inverse of x with respect to * is the same
as the inverse of x with respect to * .

Lemma 10. If (G, %) is a group with identity element e, then e™! =

e.

Theorem 11. If (G, *) is a group and H is a non-empty subset
of G, then H is a subgroup of (G, *) if and only if

x,ye H = x*y 'eH.

Theorem 12. A, = {a € S,;: a is an even permutation} is a sub-
group of (§,, o).

Theorem 13. Let S be a set and let (G, o) be a group of bijections
S — S (so that G is a subgroup of (Sym(S),0)). If T < §, then

Gr={aeG:teT = al(t) =t}
is a subgroup of (G, o).

Lemma 14. Let Sbe aset,leta: S— Sbeabijectionandlet T <
S.Thena(T)=T = a (T)=T.

Theorem 15. Let S be a set and let (G, o) be a group of bijections
S — S (so that G is a subgroup of (Sym(S),0)). If T < S, then

G(T) = {CZ €G: OK(T) = T}

is a subgroup of (G, o).



Theorem 16. If M is the set of motions (distance preserving bi-
jections) of the plane P, then M is a subgroup of (Sym(P), o).

Lemmal?7. If a € M and a(0) =0, a(e;) = e; and a(e,) = ey, then
a =tp. [Here, e; = () and e; = (9).]

Theorem 18. Every motion a € M can be written as either
@=T,00pp OF A=T,0Pp0T
for some a € P and some 0 € R, where
*74: P— P, p— p+aistranslation by a,
* pg: P— P, p— (%30 ~sinf)p is rotation by 6 about 0, and
e r: P— P, (3)— (%) isreflection in the x-axis.
Theorem 19. Let S be a non-empty set.

(a) If ~is an equivalence relation on S, then the collection of its
equivalence classes is a partition of S.

(b) If &2 is a partition of S, then the relation ~ on S defined by
X~y < JAeP:xcAandye A
is an equivalence relation on S.

Theorem 20. Let G be a permutation group on a set S. The rela-
tion ~ on S defined by

X~y << JdaeG:alx)=y
is an equivalence relation on S. (It’s called G-orbit equivalence).

Theorem 21. Let n € N. The relation on Z of congruence mod-
ulo n defined for a, b € Z by

a=b (modn) < nla->b
is an equivalence relation on Z.
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Theorem 22 (The division algorithm). Let n € N. For every in-
teger a, there exist unique integers g, r with 0 < r < n such that
a=qgn+r. Thatis,

VacZ,A'lge Zand re{0,1,...,n-1}: a=qgn+r.

Corollary 23. Let n € N. The set {0,1,...,n— 1} is a complete set
of equivalence class representatives for the equivalence relation
of congruence modulo n.

Theorem/Definition 24. Let n € N. There is a well-defined op-
eration &: Z, x Z, — Z, given by [k] & [{] = [k + /] for k,? € Z.
Moreover, (Z,,®) is an abelian group, called the group of inte-
gers modulo n.

Corollary 25. For all n € N, there is an abelian group of order n.

Fact/Definition 26. If a, b are non-zero integers then there is a
unique d € N such that

e dlaand d|b
[“d is a common divisor of @ and b”], and

e if c € Z with c|a and c|b, then c|d
[“every common divisor of a and b divides d”]

In symbols:

d|a and d|b, and
VYa,be Z\{0} 3!'d e N:
[ceZ: cla and c|b] = cld.

We call d the greatest common divisor of a and b, and write this
as gcd(a, b) or (a, b).



Theorem 27. Let G be a group and let a, b, c € G.
(@) ab=ac = b = c [left cancellation]

(b) ba=ca = b = c [right cancellation]

(c) dxeG:ax=b,andAyeG:ya=>b

(d ab=e = b=a',andba=e = b=a"'
e (cH'=c

f) (ab)™'=b""a™

Definition. Let G be a group with identity element e, let a € G
and let n € Z. We define

-

if n>
a---a n>0
n times
a’={e iftn=0
al-al ifn<o
—_——
\ —ntimes

and note that a"a™ = a™"™ and (@)™ =a"" forall n,me Z.

Theorem 28. Let a be an element of a group G. Let (a) be the
set of all integer powers of a, so that (a) = {a*: k € Z}. Then {(a)
is a subgroup of G.

We call such a subgroup a cyclic subgroup of G.

If G = (a) for some a € G, we say G is a cyclic group.

Proposition 29. (a) is an abelian subgroup of G. In particular,
if G is cyclic then G is abelian.



Definition. Let G be a group with identity element e and let a
be an element of G. Consider S = {k € N: a* = e}. We define the
order of a as

the least element of S ifS#£@
o' if S = .

Theorem 30. If o(a) # oo and n = o(a) then
(a)={e,a,a*.. a""
anda Za’ifr,se ZwithO<r,s<nandr # s, so |{(a)| = n.
Theorem 31. If o(a) = co then
(ay=1{...,a>,a % alea aa’ a. . .}

and a” #a’ifr,se Zwith r # s, so |{a)| = co.

Corollary 32. [{(a)| = o(a) for any a € G.

Definition. Let G and H be two groups. The set
GxH={(g h):g€G, he H}
together with the operation on G x H defined by
(81, h1) (g, hy) = (8182, hy) for g,g2,€ Gand hy,h, € H
is called the direct product of G and H.

Theorem 33. The direct product of two groups is a group.
If G and H are finite groups then the order of G x H is |G| - | H|.
If either G or H is infinite, then so is G x H.



Let H be a subgroup of a group G.

Definition. If a € G, the (right) coset of H by a is the set

Had:ef{ha: he H}.

[Here, a is fixed and h is a dummy variable.]

The (right) cosets of H in G are the sets Ha for a € G.

Theorem 34. The relation ~ on G defined by
a~b < ab'eH forabeG
is an equivalence relation.

Theorem 35. If b € G then [b]. = Hb. So the equivalence classes
for ~ are the same as the right cosets of H in G.
Moreover, the following conditions are equivalent:

(@ able H

(b) a= hbforsome he H
(c) ae Hb

(d) Ha=Hb

Lemma 36. If G is a group and H is a subgroup of G, then |H| =
|Ha| for every a € G.

Theorem 37 (Lagrange’s theorem).
If G is a finite group and H is a subgroup of G, then |H|||G]|.

Corollary 38. Let G be a finite group with identity element e.
For every a € G, we have o(a) | |G| and, in particular, a/°' = e.



Corollary 39. Let G be a finite group with identity element e.
If |G| is a prime number, then

(a) the only subgroups of G are {e} and G; and
(b) Gis a cyclic group, and G = (a) for every a € G with a # e.

Theorem 40. Let G and H be two groups, andlet0: G — Hbe a
homomorphism. Then

(a) O(eq) = emn;

(b) O(a ) =6(a) ! forall ae G; and

(c) O(a*)=0(a)* forall ke Zand all a € G.
Theorem 41. If G = H, then

(@) Gisabelian < H is abelian;

(b) Gl =|H];

(c) Giscyclic < H is cyclic; and

(d) G contains an element of order n
<= H contains an element of order n.

Theorem 42.
If G is a finite cyclic group of order n, then G = Z,,.

Corollary 43.
If G and H are finite cyclic groups with |G| = |H|, then G = H.

Corollary 44. Let p be a prime number.
If G is a group with |G| = p then G = Z,,.



Theorem 45. Let G and H be two groups, andlet0: G — Hbe a
homomorphism.

(@) 6(G) is a subgroup of H
(b) ker@ is a subgroup of G
(c) O isinjective < ker0 = {eg}

Theorem 46. If : G — H is an injective homomorphism, then
G=0(G).

Definition. If G is a group, then we write N <1 G and say that N
is a normal subgroup of G if

e N is a subgroup of G, and
egeG neN = gngleN.

Theorem 47. If 0: G — H is a homomorphism, then ker8 <1 G.

Theorem/Definition 48. Let G be a group and let N < G. Let
G/N ={Na: a€ G}

be the set of all right cosets of N in G. There is a well-defined
operation on G/N given by

(Na)(Nb) = N(ab)

and this operation turns G/ N into a group. The identity element
of G/ N is eg;y = N and the inverse of Na is (Na)™' = N(a™ ).



Theorem 49 (The Fundamental Homomorphism Theorem). Let
G and H be groups, and let : G — H be a surjective homomor-
phism, and let K = ker0. Then G/K = H, and in fact

¢: G/IK— H, ¢(Ka)=0(a) foracG
is a well-defined isomorphism.

Corollary 50. Let G and H be groups, and let 0: G — H be a
homomorphism, and let K = kerf. Then G/K = 6(G), and in
fact

¢: G/IK—0(G), ¢(Ka)=0(a)forae G

is a well-defined isomorphism.
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