Problem session solutions

1. Write the following permutations as a product of disjoint cycles:

(a)
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 2 & 4 & 3 \end{pmatrix}$$

(b) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 3 & 2 & 1 \end{pmatrix}$
(c) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 2 & 3 & 5 & 6 & 7 & 1 & 4 \end{pmatrix}$

Solution $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 2 & 4 & 3 \end{pmatrix} = (1 5 3 2), \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 3 & 2 & 1 \end{pmatrix} = (1 5)(2 4)$ and $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 2 & 3 & 5 & 6 & 7 & 1 & 4 \end{pmatrix} = (1 8 4 5 6 7).$

- 2. Write the following permutations as a product of disjoint cycles, and in 2-row notation:
 - (a) $(3\ 2\ 7\ 4)(7)$, as an element of S_8
 - (b) $(1\ 2\ 3\ 5)(4\ 5\ 3)$, as an element of S_5
 - (c) $(1\ 2)(3\ 5\ 1)$, as an element of S_5
 - (d) $(1 \ 6)(1 \ 5)(1 \ 4)(1 \ 3)(1 \ 2)$, as an element of S_7

Solution (a) $(3\ 2\ 7\ 4)(7) = (3\ 2\ 7\ 4)$, since (7) is the identity permutation, and $(3\ 2\ 7\ 4) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 7 & 2 & 3 & 5 & 6 & 4 & 8 \end{pmatrix}$. (b) $(1\ 2\ 3\ 5)(4\ 5\ 3) = (1\ 2\ 3\ 4)(5) = (1\ 2\ 3\ 4) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 1 & 5 \end{pmatrix}$.

(c)
$$(1\ 2)(3\ 5\ 1) = (1\ 3\ 5\ 2) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 5 & 4 & 2 \end{pmatrix}$$
.
(d) $(1\ 6)(1\ 5)(1\ 4)(1\ 3)(1\ 2) = (1\ 2\ 3\ 4\ 5\ 6) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 3 & 4 & 5 & 6 & 1 & 7 \end{pmatrix}$.

- 3. Recall that if $\alpha \in S_n$ and $k \in \mathbb{N}$ then $\alpha^k = \underbrace{\alpha \circ \cdots \circ \alpha}_{k \text{ times}}$. Let us call a cycle non-trivial if it is not the identity mapping.
 - (a) Find a cycle α such that α^3 is the product of 3 non-trivial disjoint cycles.
 - (b) Find a cycle α such that α^{12} is the product of 4 non-trivial disjoint cycles.

Solution (a) For example, if $\alpha = (1 \ 2 \ 3 \ 4 \ 5 \ 6) \in S_6$, then $\alpha^3 = (1 \ 4)(2 \ 5)(3 \ 6)$. (b) For example, if $\alpha = (1 \ 2 \ 3 \ \dots \ 19 \ 20) \in S_{20}$, then $z^{12} = (1 \ 12 \ 5 \ 17 \ 0)(2 \ 14 \ 6 \ 18 \ 10)(2 \ 15 \ 7 \ 10 \ 11)(4 \ 16 \ 8 \ 20 \ 12)$

 $\alpha^{12} = (1 \ 13 \ 5 \ 17 \ 9)(2 \ 14 \ 6 \ 18 \ 10)(3 \ 15 \ 7 \ 19 \ 11)(4 \ 16 \ 8 \ 20 \ 12).$

4. If S is any set, a permutation $\alpha \in \text{Sym}(S)$ is said to be a cycle if there are finitely many elements $a_1, \ldots, a_k \in S$ with $\alpha(a_j) = a_{j+1}$ for $0 \le j < k$ and $\alpha(a_k) = a_1$, and $\alpha(x) = x$ if $x \notin \{a_1, \ldots, a_k\}$.

Consider the mapping $\alpha \colon \mathbb{Z} \to \mathbb{Z}$, $n \mapsto n+1$. Explain why $\alpha \in \text{Sym}(\mathbb{Z})$ and show that α is not equal to a composition of a finite number of cycles.

Solution We have $\alpha(n) = \alpha(m) \iff n+1 = m+1 \iff n = m$, so α is one-to-one, and if $m \in \mathbb{Z}$ then $m-1 \in \mathbb{Z}$ and $\alpha(m-1) = m$, so α is onto. Hence $\alpha \in \text{Sym}(\mathbb{Z})$.

Suppose that α is a composition of finitely many cycles, say

$$\alpha = \beta_1 \circ \beta_2 \circ \cdots \circ \beta_n$$

for some $n \ge 1$, where each β_i is a cycle.

[We will show that this leads to a contradiction, so that this cannot be possible.]

Consider a fixed *i* with $1 \leq i \leq n$. Since \mathbb{Z} is infinite and β_i only moves finitely many elements of \mathbb{Z} , there is an integer $m_i \in \mathbb{Z}$ such that $\beta_i(x) = x$ for all $x \in \mathbb{Z}$ with $x \geq m_i$.

Now let $m = \max\{m_1, \ldots, m_n\}$. We have $\beta_i(m) = m$ for each *i* with $1 \le i \le n$, so

$$m+1 = \alpha(m) = (\beta_1 \circ \beta_2 \circ \cdots \circ \beta_n)(m) = m,$$

which is a contradiction. So α cannot be a composition of finitely many cycles.