
Mathematics 1214: Introduction to Group Theory

Solutions to homework exercise sheet 8

1. Let G be a group and let a, b ∈ G.

(a) Prove that if a, b ∈ G, then a = b ⇐⇒ ab−1 = e.

(b) Prove that G is an abelian group if and only if aba−1b−1 = e for all a, b ∈ G.

Solution (a) We have a = b =⇒ ab−1 = bb−1 =⇒ ab−1 = e. and ab−1 = e =⇒ ab−1b =
eb =⇒ ae = b =⇒ ab.

(b) G is abelian ⇐⇒ ab = ba for all a, b ∈ G ⇐⇒ ab(ba)−1 = e for all a, b ∈ G, by (a),
⇐⇒ aba−1b−1 = e for all a, b ∈ G, since (ba)−1 = a−1b−1 by Theorem 27.

2. [Optional question]
Let G be a group and let a ∈ G. Prove that for any integers n,m ∈ Z, we have anam = an+m.
[Suggestion: fix m ∈ Z and show that this works for n = 0 and n = 1, then prove it by
induction on n for n ≥ 1. Finally, think about what happens when n < 0.]

Solution If n = 0 then an = e so anam = am and an+m = am. So this works.

If n = 1 then

anam = aam =







a(a . . . a
︸ ︷︷ ︸

m times

) = am+1 if m > 0

ae = a1 if m = 0

aa−1 = e = a0 if m = −1

a(a−1 . . . a−1
︸ ︷︷ ︸

−m times

) = aa−1( a−1 . . . a−1
︸ ︷︷ ︸

−m − 1 = −(m + 1) times

) = am+1 if m < −1







= am+1

If n > 0 and we know that an−1am = an−1+m, then since an = a1an−1 (by the last paragraph
applied with 1 in place of n and n − 1 in place of m), we have

anam = a1an−1am = a1an−1+m ∗

= a1+n−1+m = an+m

[we have used the result of the last paragraph again at ∗].

So we have shown that

n,m ∈ Z with n ≥ 0 =⇒ anam = an+m. (⋆)

If n < 0, let k = −n. Since k > 0, (⋆) gives aka−k = a0 = e, so a−k = (ak)−1 by Theorem 27.
Now akam−k = am by (⋆), so multiplying both sides on the left by a−k = (ak)−1 gives am−k =
a−kam, so am+n = anam, as desired.

3. Let G be a group and let a ∈ G. Prove that for any integers n,m ∈ Z, we have (an)m = anm.
[Suggestion: fix n ∈ Z and show that this works for m = 0, and then prove it by induction
on m for m > 0. Then consider what happens when m < 0.]



Solution Fix n ∈ Z. If m = 0 then (an)m = (an)0 = e (since anything to the power of 0 is
the identity element, by definition) and anm = a0 = e. So this case is fine.

Suppose that m > 0, and that (an)m−1 = an(m−1). Then (an)m = (an)m−1am = an(m−1)am =
an(m−1)+m = anm. Hence, by induction, (an)m = anm for all m ≥ 0.

Now suppose that m < 0, and let k = −m. Then for any x ∈ G and t ∈ Z we have
xtx−t = x0 = e, so x−t = (xt)−1 by Theorem 27. Applying this to x = an, t = k and then
x = a, t = nk and using (an)k = ank (which we’ve proven above, since k > 0) gives

(an)m = (an)−k = ((an)k)−1 = (ank)−1 = a−nk = anm.

4. Disprove the following statements.

(a) If G is a group and a, b ∈ G and n ∈ Z, then (ab)n = anbn.

(b) If G is a group and a, b ∈ G and n ∈ Z, then (ab)n = bnan.

Solution Let G = S3, let n = 2 and let a = (1 2) and b = (1 2 3). We have ab = (1 2)(1 2 3) =
(2 3), so (ab)2 = (2 3)(2 3) = (1) and a2b2 = (1 2)2(1 2 3)2 = (1)(1 3 2) = (1 3 2). So
(ab)2 6= a2b2, so (a) is false. Similarly, b2a2 = (1 3 2) 6= (ab)2, so (b) is false.

5. Let G be a group and let a ∈ G.

(a) Show that 〈a〉 = 〈a−1〉.

(b) Deduce from (a) that o(a) = o(a−1).

Solution (a) We have 〈a−1〉 = {(a−1)k : k ∈ Z} = {a−k : k ∈ Z} = {aℓ : ℓ ∈ Z} = 〈a〉.

(b) By Corollary 32, o(a) = |〈a〉| and o(a−1) = |〈a−1〉|, so this is immediate from (a).

6. For each element a in the group Z10, compute o(a) and the cyclic subgroup 〈a〉.

Solution Note that by exercise 5, the answers for a and a−1 are the same. So this nearly
halves the amount of calculation we have to do.

a o(a) 〈a〉
[0] 1 {[0]}
[1] 10 Z[10]

[2] 5 {[0], [2], [4], [6], [8]}
[3] 10 Z[10]

[4] 5 {[0], [4], [8], [12], [16]} = {[0], [4], [8], [2], [6]} = 〈[2]〉
[5] 2 {[0], [5]}
[6] 5 〈[4]〉 (since [6] = [4]−1)
[7] 10 〈[3]〉 = Z[10] (since [7] = [3]−1)
[8] 5 〈[2]〉 (since [8] = [2]−1)
[9] 10 〈[1]〉 = Z[10] (since [9] = [1]−1)

7. Let Q = { n

m
: n,m ∈ Z, m 6= 0} denote the set of rational numbers. It is not hard to show

that (Q, +) is an abelian group. Prove that (Q, +) is not a cyclic group.
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Solution If Q is cyclic, then Q = 〈x〉 for some x ∈ Q. So x = n

m
for some n,m ∈ Z with

m 6= 0, so Q = 〈 n

m
〉 = {k n

m
: k ∈ Z}. So the rational number n

2m
is in Q = {k n

m
: k ∈ Z}, so

there is an integer k ∈ Z with k n

m
= n

2m
, so k = 1

2
and k ∈ Z, which is a contradiction. So Q

cannot be cyclic.

8. Let n,m ∈ Z. [As usual, Z denotes the group (Z, +).]

(a) Compute the cyclic subgroups 〈n〉 and 〈m〉, and show that

〈n〉 ⊆ 〈m〉 ⇐⇒ m
∣
∣ n.

(b) Find a sequence of H1, H2, H3, . . . of cyclic subgroups of Z such that

H1 ) H2 ) H3 ) . . . .

Solution (a) If m|n then n = km for some k ∈ Z, so

〈n〉 = 〈km〉 = {ℓkm : ℓ ∈ Z} ⊆ {tm : t ∈ Z} = 〈m〉.

So m|n =⇒ 〈n〉 ⊆ 〈m〉.

Conversely, if 〈n〉 ⊆ 〈m〉, then since n ∈ 〈n〉, we have n ∈ 〈m〉 = {tm : ∈ Z}, so n = tm for
some t ∈ Z, so m|n. Hence 〈n〉 ⊆ 〈m〉 =⇒ m|n.

(b) We have 2|22|23|24| . . . , so if Hk = 〈2k〉 then H1 ⊇ H2 ⊇ H3 ⊇ . . . by (a). If Hk = Hk+1

then Hk ⊆ Hk+1, so 2k+1|2k by (a), which is false (since 2k+1 > 2k > 0). This contradiction
shows that Hk 6= Hk+1 for k ≥ 1. Hence H1 ) H2 ) . . . .
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