
Mathematics 1214: Introduction to Group Theory

Homework exercise sheet 6

Due 12:50pm, Friday 12th March 2010

1. Find M(T ) for the following sets T ⊆ P . If M(T ) has finite order, give its Cayley table.

(a) The circle of radius 1 centred at the origin (this circle is given by x2 + y2 = 1)

(b) The ellipse given by x2 + 2y2 = 4 (you can plot this using the fact that it’s an ellipse,
finding its x and y intercepts and the symmetry of the equation)

(c) The filled in square given by |x| + |y| ≤ 1

Solution (a) We claim that M(T ) = M{0} = {α ∈ M : α(0) = 0}.

If α ∈ M{0} then α ∈ M , so α = τa ◦ ρθ ◦ s where s = r or s = ιP , by Theorem 18, and
α(0) = a = 0, so α = ρθ or α = ρθ ◦ r. Since s(T ) = T and ρθ(T ) = T and M(T ) is a subgroup
of M , we have α = ρθ ◦ s ∈ M(T ). Hence M{0} ⊆ M(T ).

On the other hand, if α ∈ M(T ) then 2 = d(e1,−e1) = d(α(e1), α(−e1)) and α(e1), α(−e1) ∈ T .
Since the only pairs of points in T which are distance 2 from one another are opposite points,
α(e1) and α(−e1) are opposite points on T . Now d(α(0), α(±e1)) = d(0,±e1) = 1 so α(0)
lies in the intersection of the circles of radius 1 centred at α(e1) and α(−e1). Since these are
opposite points on the unit circle, this forces α(0) = 0. So α ∈ M{0}. Hence M(T ) ⊆ M{0}.

[Alternatively, we could simply “observe” that M(T ) is the set of motions not involving trans-
lations, but it’s nice to be able to write down a rigorous argument.]

Hence M(T ) = M{0} = {ρθ ◦ s : θ ∈ R, s ∈ {ιP , r}}.

Clearly, this group has infinite order (for example, the rotations ρθ for θ in the infinite set [0, 2π)
are all different, so there are infinitely many of them).

(b) By drawing a picture as suggested, we observe that the points 2e1 and −2e1 are in T and
d(2e1,−2e1) = 4, which is larger than d(p, q) for any other pair p, q ∈ T . Hence if α ∈ M(T )

then α({2e1,−2e1}) = {2e1,−2e1} and, arguing as in (a), this forces α(0) = 0. So α = ρθ ◦ s

for s = ιP or s = r. If s = ιP then α({2e1,−2e1}) = {2e1,−2e1} forces θ = 0 or θ = π, and
if s = r then again we must have θ = 0 or θ = π. So M(T ) ⊆ {ιP , ρπ, r, ρπ ◦ r}. It’s easy to
check (by drawing a picture) that these four motions α all have the property that α(T ) = T ,
so M(T ) = {ιP , ρπ, r, ρπ ◦ r}. Here’s the Cayley table:

◦ ιP ρπ r ρπ ◦ r

ιP ιP ρπ r ρπ ◦ r

ρπ ρπ ιP ρπ ◦ r r

r r ρπ ◦ r ιP ρπ

ρπ ◦ r ρπ ◦ r r ρπ ιP



(c) Again looking at the pairs of points in T at furthest distance from one another, we can
argue that M(T ) = M({vertices of T}) = D4. So M(T ) = {ιP , ρ, ρ2, ρ3, r, r0, r1, r2, r3} where ρ = ρπ/2

and rj = ρj ◦ r for j = 0, 1, 2, 3. The Cayley table is

◦ ιP ρ ρ2 ρ3 r0 r1 r2 r3

ιP ιP ρ ρ2 ρ3 r0 r1 r2 r3

ρ ρ ρ2 ρ3 ιP r1 r2 r3 r0

ρ2 ρ2 ρ3 ιP ρ r2 r3 r0 r1

ρ3 ρ3 ιP ρ ρ2 r3 r0 r1 r2

r0 r0 r3 r2 r1 ιP ρ3 ρ2 ρ

r1 r1 r0 r3 r2 ρ ιP ρ3 ρ2

r2 r2 r1 r0 r3 ρ2 ρ ιP ρ3

r3 r3 r2 r1 r0 ρ3 ρ2 ρ ιP

2. Let T ⊆ P , fix a motion α ∈ M and let S = α(T ). Prove that

M(S) = {α ◦ β ◦ α−1 : β ∈ M(T )}.

Solution Let H = {α ◦ β ◦ α−1 : β ∈ M(T )}. If γ ∈ M , then

γ ∈ M(S) ⇐⇒ γ(S) = S

⇐⇒ γ(α(T )) = α(T ) since S = α(T )

⇐⇒ α−1(γ(α(T )) = T by Lemma 14

⇐⇒ (α−1 ◦ γ ◦ α)(T ) = T since λ(µ(X)) = (λ ◦ µ)(X)

⇐⇒ α−1 ◦ γ ◦ α ∈ M(T ) by the definition of M(T )

⇐⇒ α−1 ◦ γ ◦ α = β for some β ∈ M(T ) since this is what “∈” means

⇐⇒ γ = α ◦ β ◦ α−1 for some β ∈ M(T )

by considering α ◦ LHS ◦ α−1, and the invertibility of α and α−1

⇐⇒ γ ∈ H by the definition of H.

Since both H and M(S) are subsets of M , this shows that H = M(S).

3. Which of the following defines an equivalence relation ∼ on P = {
(

x
y

)

: x, y ∈ R}?
[Hint: two do, and two do not]. Prove that your answers are correct.

(a)
(

x
y

)

∼
(

a
b

)

⇐⇒ y − b ∈ Z

(b)
(

x
y

)

∼
(

a
b

)

⇐⇒ x − a ∈ Z or y − b ∈ Z

(c) p ∼ q ⇐⇒ d(p, 0) = d(q, 0) where d(
(

x
y

)

,
(

a
b

)

) =
√

(x − a)2 + (y − b)2

(d) p ∼ q ⇐⇒ p · q = 0 where · is the vector dot product
(

x
y

)

·
(

a
b

)

= xa + yb.

For those relations that are equivalence relations, compute the equivalence classes and find a
complete set of equivalence class representatives.
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Solution (a) This is an equivalence relation. Indeed:

∼ is reflexive since
(

x
y

)

∈ P =⇒ y − y = 0 ∈ Z =⇒
(

x
y

)

∼
(

x
y

)

∼ is symmetric since
(

x
y

)

∼
(

a
b

)

⇐⇒ y − b ∈ Z ⇐⇒ −(y − b) ∈ Z ⇐⇒ b − y ∈ Z ⇐⇒
(

a
b

)

∼
(

x
y

)

∼ is transitive since
(

x
y

)

∼
(

a
b

)

and
(

a
b

)

∼
(

c
d

)

⇐⇒ y − b ∈ Z and b − d ∈ Z =⇒
y − b + b − d ∈ Z ⇐⇒ y − d ∈ Z ⇐⇒

(

x
y

)

∼
(

c
d

)

.
In summary,

(

x
y

)

∼
(

a
b

)

and
(

a
b

)

∼
(

c
d

)

=⇒
(

x
y

)

∼
(

c
d

)

, so ∼ is transitive.

The equivalence classes are the sets

[(

a
b

)]

=
{(

x
y

)

∈ P : y−b ∈ Z
}

=
{(

x
y

)

∈ P : y = b+n for some n ∈ Z
}

= {
(

x
b+n

)

: x ∈ R, n ∈ Z}.

We claim that a complete set of equivalence class representatives is R =
{(

0
y

)

: 0 ≤ y < 1
}

.

Indeed, if
(

a
b

)

∈ R then
(

a
b

)

∼
(

0
⌊b⌋

)

where ⌊b⌋ is the fractional part of b (that is, the number
b + n where n ∈ Z is the unique integer such that 0 ≤ b + n < 1), so R contains at least
one element from every equivalence class. Moreover, 0 ≤ y1 < y2 < 1 with y1 6= y2, say with
y1 < y2, then 0 < y2−y1 < 1, so

(

0
y1

)

6∼
(

0
y2

)

. Hence
(

0
y1

)

and
(

0
y2

)

are in different equivalence
classes, so R contains precisely one element from each equivalence class.

(b) This is not an equivalence relation. Indeed, we have
(

1/2
0

)

∼
(

1/2
1

)

and
(

1/2
1

)

∼
( 1/2

1/3

)

, but
(

1/2
0

)

6∼
( 1/2

1/3

)

. So ∼ is not transitive, so it is not an equivalence relation.

(c) This is an equivalence relation. Indeed:

∼ is reflexive since p ∈ P =⇒ d(p, 0) = d(p, 0) ⇐⇒ p ∼ p

∼ is symmetric since p ∼ q ⇐⇒ d(p, 0) = d(q, 0) ⇐⇒ d(q, 0) = d(p, 0) ⇐⇒ q ∼ p

∼ is transitive since p ∼ q and q ∼ r ⇐⇒ d(p, 0) = d(q, 0) and d(q, 0) = d(r, 0) =⇒
d(p, 0) = d(r, 0) ⇐⇒ p ∼ r.

For t ≥ 0, we have d(te1, 0) = t (where te1 is, of course, the vector
(

t
0

)

). Hence

[te1] = {p ∈ P : d(p, 0) = t}

is the circle of radius t if t > 0 centred at 0, and [te1] = {0} if t = 0. Moreover, it is clear from
this geometric interpretation that if t1 6= t2 then the circles [t1e1] and [t2e1] do not intersect
one another. We claim that every equivalence class is of this form. Indeed, for every p ∈ P , if
t = d(p, 0) then p ∼ te1, so [p] = [te1], which establishes the claim. It follows from this that
{te1 : t ≥ 0} is a complete set of equivalence classes representatives.

(d) This is not an equivalence relation, since, for example, e1 ∼ e2 and e2 ∼ −e1, but e1 6∼ −e1.
Hence ∼ is not transitive, so it is not an equivalence relation.

4. Let H be a permutation group on a non-empty set S, and consider the relation ∼ of H-orbit
equivalence on S defined by

x ∼ y ⇐⇒ ∃α ∈ H : α(x) = y.

Theorem 20 shows that ∼ is an equivalence relation on S. Compute the equivalence classes
and find a complete set of equivalence class representatives for ∼ if:
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(a) S = {1, 2, 3, 4}, H = {(1), (2 3)}

(b) S = {1, 2, 3, 4}, H = A4

(c) S = {1, 2, . . . , n}, T ⊆ S and H = GT where G = Sn

(d) S = {1, 2, . . . , n}, T ⊆ S and H = G(T ) where G = Sn

Solution (a) By considering α(x) for x ∈ S and α ∈ H, we see that the equivalence relation is
given by 2 ∼ 3, 3 ∼ 2 and x ∼ x for all x ∈ S. So the equivalence classes are {{1}, {2, 3}, {4}}
and a complete set of equivalence classes representatives is {1, 2, 4} (another one is {1, 3, 4}).

(b) Since (1 2)(3 4) ∈ H = A4, we have 1 ∼ 2; since (1 3)(2 4) ∈ H, we have and 1 ∼ 3, since
since (1 4)(2 3) ∈ H we have 1 ∼ 4. Hence [1] = {1, 2, 3, 4} = [2] = [3] = [4], so {1} is a
complete set of equivalence class representatives. (And each of the three sets {2}, {3} and {4}
are, as well). [This is a trivial equivalence relation on S: everything is equivalent to everything
else.]

(c) If t ∈ T then α(t) = t for all α ∈ GT . Hence [t] = {t}.

On the other hand, if x, y 6∈ T with x 6= y then the transposition (x y) is in H = GT , so x ∼ y.
Hence [x] ⊇ {y : y ∈ S, y 6∈ T} = S\T . [This is my notation for the set difference. Some people
prefer to write this as S − T .] And we showed in the last paragraph that t ∈ T =⇒ t 6∼ x, so
[x] = S \ T .

Hence the equivalence classes are {S \ T, {t} : t ∈ T}, if T ( S and {{t} : t ∈ T} if T = S. So
a complete set of equivalence class representatives can be obtained by taking T together with
any element of S \ T , if T ( S, and by taking T if T = S.

(d) If t1, t2 ∈ T then (t1 t2) ∈ H = G(T ), so t1 ∼ t2. If x ∈ S \ T then t1 6∼ x, since α(t1) ∈ T

for every α ∈ H. So [t1] = T .

Similarly, if x, y ∈ S \ T then [x] = S. So provided ∅ 6= T ( S, the equivalence classes are the
elements of the set {T, S \ T}, and a complete set of equivalence class representatives is {t, x}
where t is any (fixed) element of T , and x is any (fixed) element of S \ T . If T = ∅ or T = S

then the collection of equivalence classes is {S} and for any k ∈ S, the set {k} is a complete
set of equivalence class representatives.

5. Let S and T be non-empty sets and let f : S → T be a fixed mapping. Let ≈ be an equivalence
relation on T , and consider the relation ∼ on S defined by

x ∼ y ⇐⇒ f(x) ≈ f(y) for x, y ∈ S.

(a) Prove that ∼ is an equivalence relation on S.

(b) Prove that [x]∼ = f−1([f(x)]≈) for every x ∈ S.

[Notation explanation: if U ⊆ T then f−1(U) = {y ∈ S : f(y) ∈ U}].

(c) Explain how (a) may be applied to give alternative proofs that the two equivalence rela-
tions you identified in Exercise 3 really are equivalence relations.
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Solution (a) ∼ is reflexive since x ∈ S =⇒ f(x) ∈ T =⇒ f(x) ≈ f(x) ⇐⇒ x ∼ x.

∼ is symmetric since for x, y ∈ S we have x ∼ y ⇐⇒ f(x) ≈ f(y) =⇒ f(y) ≈ f(x) ⇐⇒
y ∼ x

∼ is transitive since for x, y, z ∈ S we have x ∼ y and y ∼ z ⇐⇒ f(x) ≈ f(y) and f(y) ≈
f(z) =⇒ f(x) ≈ f(z) ⇐⇒ x ∼ z.

(b) We have

f−1([f(x)]≈) = {y ∈ S : f(y) ∈ [f(x)]≈}

= {y ∈ S : f(y) ≈ f(x)}

= {y ∈ S : y ∼ x} by the definition of ∼

= [x]∼.

(c) Let f : P → R,
(

x
y

)

7→ y and consider the relation ≈ on R defined by y ≈ b ⇐⇒ y−b ∈ Z.
The relation ∼ in 3(a) is given by applying the definition in (a) to f and ≈, so we could prove
that this is an equivalence relation by checking that ≈ is an equivalence relation on R. [This
is easy to do, but we omit it.]

Now take f : P → R, p 7→ d(p, 0) and let ≈ to be the equality relation = on R. This is certainly
an equivalence relation, and the relation ∼ in 3(c) is given by applying the definition in (a) to
f and ≈. Hence ∼ is an equivalence relation by (a).
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