Mathematics 1214: Introduction to Group Theory

Homework exercise sheet 6
Due 12:50pm, Friday 12th March 2010

1. Find M7y for the following sets T'C P. If My has finite order, give its Cayley table.

(a) The circle of radius 1 centred at the origin (this circle is given by z2 + % = 1)

(b) The ellipse given by z? + 2y?> = 4 (you can plot this using the fact that it’s an ellipse,
finding its z and y intercepts and the symmetry of the equation)

(c¢) The filled in square given by |z| + |y| < 1

Solution (a) We claim that My = My = {a € M: «(0) = 0}.

If « € Mypy then o € M, so o = 7,0 pgos where s = r or s = 1p, by Theorem 18, and
a(0) =a=0,s0 a=pgora=pgor. Since s(T') =T and py(T") = T and My is a subgroup
of M, we have a = pg o s € M(p). Hence M, C M.

On the other hand, if & € M7y then 2 = d(e;, —e1) = d(a(ey), a(—e1)) and a(er), a(—ey) € T.
Since the only pairs of points in 7" which are distance 2 from one another are opposite points,
a(e;) and a(—e;p) are opposite points on 7. Now d(a(0), a(£e;)) = d(0,%e;) = 1 so «(0)
lies in the intersection of the circles of radius 1 centred at a(e;) and a(—e;). Since these are
opposite points on the unit circle, this forces a(0) = 0. So a € M. Hence My C Myoy.

[Alternatively, we could simply “observe” that Mp is the set of motions not involving trans-
lations, but it’s nice to be able to write down a rigorous argument.]

Hence M7y = Mo = {ppos:0cR, sc{p,r}}.

Clearly, this group has infinite order (for example, the rotations py for 6 in the infinite set [0, 27)
are all different, so there are infinitely many of them).

(b) By drawing a picture as suggested, we observe that the points 2e; and —2e; are in 7" and
d(2e1,—2e1) = 4, which is larger than d(p,q) for any other pair p,q € T. Hence if o € M
then «({2e1, —2¢1}) = {2e1, —2e;} and, arguing as in (a), this forces a(0) = 0. So a = pyo s
for s =up or s =r. If s = 1p then a({2e1,—2¢;}) = {2¢1, —2¢;} forces 6 = 0 or § = 7, and
if s = r then again we must have § = 0 or § = m. So M1y C {tp, pr,7, px 07} It’s easy to
check (by drawing a picture) that these four motions « all have the property that a(T) = T,
so M1y = {tp, px,7, px o 7}. Here’s the Cayley table:

o Lp P T PrOT
Lp Lp Pr r PrOT
Pr Pr lp PrOT r
r T pzOT  Lp P

PrOT | PrOT r Pr Lp




(c) Again looking at the pairs of points in 7" at furthest distance from one another, we can
argue that M(T) = M({vertices of T}) = D4- So M(T) = {Lp, P, /927 /)37 7o, 71,72, T3} where P = Pr/2
and r; = p’ or for j = 0,1,2,3. The Cayley table is

o |tp P P P To T1 T T3
tp | tp P P2 P3 To T1 T2 T3
plp PP owp T oTa T3 T
PPl Pt e p oy Ty o M
Pl e p PPy g T T

To|To T3 T2 T1 Llp pP° p
T |T To T3 T2 P

Tog | T T1 To T3 P2 p tp p
3|3 Tro "1 To P70 P p Llp
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2. Let T'C P, fix a motion a € M and let S = a(T"). Prove that

Mg ={aoBoa™": € Mn)}.

Solution Let H ={aofoa': € Mmp}. If y € M, then

’VGM(S) <~ 7

v(a(T)) =T by Lemma 14
ol oy0a)(T) =T since A(u(X)) = (Ao u)(X)
aloyoae M1y by the definition of M)

a'oyoa =g for some 8 € M) since this is what “€” means

)
a(T)) =a(T) since S = a(T)
(

y=aofoa ! for some 3 € Mr
by considering oo LHS o a™!, and the invertibility of o and o*
v € H by the definition of H.

[

Since both H and Mgy are subsets of M, this shows that H = Mg).

3. Which of the following defines an equivalence relation ~ on P = {(y): z,y € R}?
[Hint: two do, and two do not]. Prove that your answers are correct.

(a)( ) (%):)y—bez

(b)() ()(z)x—anory—bGZ

(¢) p~q < d(p,0) =d(q,0) where d((g),(%)): V(i —a)?+ (y—b)?
(d) p

~q <= p-q =0 where - is the vector dot product (;j) . (‘;) = xa + yb.

For those relations that are equivalence relations, compute the equivalence classes and find a
complete set of equivalence class representatives.



Solution (a) This is an equivalence relation. Indeed:

~ is reflexive since (y) e P = y—-y=0€Z = (3) ~ (})

~ is symmetric since () ~ (§) < y—beZ < —(y—b) €L < b—ycl <
(8) ~ ()

~ is transitive since (i) ~ (‘Z;) and (‘;) ~ (2) — y—beZadb—-decl =
y—b+b—del < y—delZ < (j)~(§)-

) ~ (§), so ~ is transitive.

The equivalence classes are the sets

()] ={(})eP:y—beZ}={(}) e Pry=btnforsomenecZ} ={(yI,): z €R, n € Z}.

We claim that a complete set of equivalence class representatives is R = {(2) 0<y < 1}.
Indeed, if (%) € R then (§) ~ (ng) where |b] is the fractional part of b (that is, the number
b+ n where n € Z is the unique integer such that 0 < b+ n < 1), so R contains at least
one element from every equivalence class. Moreover, 0 < y; < yo < 1 with y; # vy, say with
Y1 < Y2, then 0 < yo—y1 < 1,50 () % (). Hence () and () are in different equivalence
classes, so R contains precisely one element from each equivalence class.

(b) This is not an equivalence relation. Indeed, we have (162) ~ (%) and (?) ~ (1%), but
(1(/)2) b (ig) So ~ is not transitive, so it is not an equivalence relation.

(c) This is an equivalence relation. Indeed:

~ is reflexive since p € P = d(p,0) =d(p,0) <= p~p

~ is symmetric since p ~ ¢ <= d(p,0) = d(q,0) <= d(q,0) =d(p,0) < q~p

~ is transitive since p ~ ¢ and ¢ ~ r <= d(p,0) = d(¢,0) and d(q,0) = d(r,0) =
d(p,0) =d(r,0) < p~r.

For t > 0, we have d(te;,0) = ¢ (where te; is, of course, the vector (§)). Hence

[te1] = {p € P:d(p,0) =t}

is the circle of radius ¢ if £ > 0 centred at 0, and [te;] = {0} if ¢ = 0. Moreover, it is clear from
this geometric interpretation that if ¢; # ty then the circles [tie;1] and [tae;] do not intersect
one another. We claim that every equivalence class is of this form. Indeed, for every p € P, if
t = d(p,0) then p ~ tey, so [p] = [te;], which establishes the claim. It follows from this that
{te;: t > 0} is a complete set of equivalence classes representatives.

(d) This is not an equivalence relation, since, for example, e; ~ ey and ey ~ —eq, but e; % —e;.
Hence ~ is not transitive, so it is not an equivalence relation.

. Let H be a permutation group on a non-empty set .S, and consider the relation ~ of H-orbit
equivalence on S defined by

r~y <= Ja€ H:a(z)=y.

Theorem 20 shows that ~ is an equivalence relation on S. Compute the equivalence classes
and find a complete set of equivalence class representatives for ~ if:
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(a) S = {1,2,3,4}, H = {(1), (2 3)}
(b) S={1,2,3,4}, H= A4

(¢c) S={1,2,...,n}, T C S and H = Gr where G =95,
(d) S={1,2,...,n}, T C S and H = G (1) where G = S,

Solution (a) By considering a(z) for x € S and o € H, we see that the equivalence relation is
given by 2 ~ 3,3 ~ 2 and z ~ x for all x € S. So the equivalence classes are {{1},{2,3},{4}}
and a complete set of equivalence classes representatives is {1,2,4} (another one is {1, 3,4}).

(b) Since (1 2)(3 4) € H = A4, we have 1 ~ 2; since (1 3)(2 4) € H, we have and 1 ~ 3, since
since (1 4)(2 3) € H we have 1 ~ 4. Hence [1] = {1,2,3,4} = [2] = [3] = [4], so {1} is a
complete set of equivalence class representatives. (And each of the three sets {2}, {3} and {4}
are, as well). [This is a trivial equivalence relation on S: everything is equivalent to everything
else.]

(c) If t € T then a(t) =t for all & € Gy. Hence [t] = {t}.

On the other hand, if x,y & T with x # y then the transposition (z y) is in H = G, so x ~ y.
Hence [z] D {y: y € S, y € T} = S\T. [This is my notation for the set difference. Some people
prefer to write this as S —T.] And we showed in the last paragraph that t € T = ¢ ¢ z, so
[z] =S\ T.

Hence the equivalence classes are {S\ T, {t}: t € T}, if T C Sand {{t}:t€T}if T =5. So
a complete set of equivalence class representatives can be obtained by taking T' together with
any element of S\ T, if T'C S, and by taking T if T = S.

(d) If t1,to € T then (ty t3) € H = Gp), so ty ~ ty. If 2 € S\ T then t; o x, since a(t;) € T
for every o« € H. So [t1] =T.

Similarly, if z,y € S\ T then [z] = S. So provided ) # T C S, the equivalence classes are the
elements of the set {T', 5\ T'}, and a complete set of equivalence class representatives is {t, z}
where t is any (fixed) element of T, and x is any (fixed) element of S\ T. U T =0 or T =S
then the collection of equivalence classes is {S} and for any k € S, the set {k} is a complete
set of equivalence class representatives.

. Let S and T be non-empty sets and let f: S — T be a fixed mapping. Let &~ be an equivalence
relation on 7', and consider the relation ~ on S defined by

x~y = f(x)=~ f(y) forax,yes.

(a) Prove that ~ is an equivalence relation on S.
(b) Prove that [z]. = f~'([f(z)]~) for every z € S.
[Notation explanation: if U C T then f~3(U) ={y € S: f(y) € U}].

(c) Explain how (a) may be applied to give alternative proofs that the two equivalence rela-
tions you identified in Exercise 3 really are equivalence relations.



Solution (a) ~ is reflexive since z € S = f(z) € T = f(x) = f(z) <= z ~ .

~ is symmetric since for z,y € S we have z ~ y <= f(2) = f(y) = f(y) = f(z) <=
Yy~

~ is transitive since for z,y,2 € S we have z ~ y and y ~ z <= f(x) = f(y) and f(y) =
fz) = f@) = f(z) <= z~=z

(b) We have

FHf(@)]=) ={y € St fy) € [f(a)]=}
={yeS: fly) = f(x)}
={ye S:y~uz} by the definition of ~

= [x]~.

(c) Let f: P — R, (y) — y and consider the relation ~ on R defined by y & b <= y—b € Z.
The relation ~ in 3(a) is given by applying the definition in (a) to f and =2, so we could prove
that this is an equivalence relation by checking that & is an equivalence relation on R. [This
is easy to do, but we omit it.]

Now take f: P — R, p+— d(p,0) and let ~ to be the equality relation = on R. This is certainly
an equivalence relation, and the relation ~ in 3(c) is given by applying the definition in (a) to
f and ~. Hence ~ is an equivalence relation by (a).



