
Mathematics 1214: Introduction to Group Theory

Homework exercise sheet 5

Due 12:50pm, Friday 26th February 2010

1. Let G = A4, so that

G = {e, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3), (1 2 3), (1 3 2), (1 3 4), (1 4 3), (1 2 4), (1 4 2), (2 3 4), (2 4 3)}

where e is the identity mapping on {1, 2, 3, 4}. Find GT and G(T ) for the following sets T :

(a) T = {1, 3} (b) T = {2, 3, 4} (c) T = {4}

Solution (a) A permutation in G is in GT if and only if it fixes 1 and 3. But by checking
each element of G in turn, we see that the only permutation in G fixing 1 and 3 is the identity
mapping. So GT = {e}. On the other hand, a permutation α ∈ G is in G(T ) if and only if
α({1, 3}) = {1, 3} ⇐⇒ α : 1 7→ 1, 3 7→ 3 or α : 1 7→ 3, 3 7→ 1, and the only permutations
in G with this property are e and (1 3)(2 4). So G(T ) = {e, (1 3)(2 4)}.

(b) If α ∈ GT then α(2) = 2, α(3) = 3 and α(4) = 4. Since α is injective, this forces
α(1) = 1, and so α = e, so GT = {e}. If α ∈ G(T ) then α(T ) = T , and since α is injective,
this again forces α(1) = 1. So α(1) = 1, and for t ∈ T , α(T ) can be anything in T . So
G(T ) = G{1} = {e, (2 3 4), (2 4 3)}.

(c) A permutation in G is in GT if and only if it fixes 4. So GT = {e, (1 2 3), (1 3 2)}. Moreover,
a permutation α ∈ G is in G(T ) if and only if α({4}) = {4} ⇐⇒ α(4) = 4 ⇐⇒ α ∈ GT . So
G(T ) = GT in this case.

2. Let S be a set and let G be a subgroup of (Sym(S), ◦). Let A and B be subsets of S, let
H = GA and let K = G(A). Prove that GA∪B = HB, and give an example to show that G(A∪B)

need not be equal to K(B).

Solution We have H = GA = {α ∈ G : x ∈ A =⇒ α(x) = x}. So

GA∪B = {α ∈ G : x ∈ A ∪ B =⇒ α(x) = x}

= {α ∈ G : [x ∈ A =⇒ α(x) = x] and [x ∈ B =⇒ α(x) = x]}

= {α ∈ G : α ∈ H and x ∈ B =⇒ α(x) = x}

= {α ∈ H : x ∈ B =⇒ α(x) = x}

= HB.

On the other hand, if G = S2, A = {1} and B = {2} then G(A∪B) = S2 and K = {e}, so
K(B) = {e} 6= G(A∪B).

3. Let α, β be motions of the plane P . Show that

α = β ⇐⇒ α(0) = β(0), α(e1) = β(e1) and α(e2) = β(e2)

where, as usual, 0 =
(

0
0

)

is the zero vector in P , e1 =
(

1
0

)

and e2 =
(

0
1

)

.



Solution If α = β then α(p) = β(p) for every p ∈ P , so in particular, α(0) = β(0), α(e1) =
β(e1) and α(e2) = β(e2).

Conversely, suppose that α(0) = β(0), α(e1) = β(e1) and α(e2) = β(e2). Let γ = β−1 ◦ α. We
have γ ∈ M (since M is a group under composition) and γ(0) = 0, γ(e1) = e1 and γ(e2) = e2.
By Lemma 17, γ = ιP , the identity element of M . So β−1 ◦ α = ιP , and composing both sides
on the left with β gives α = β ◦ β−1 ◦ α = β ◦ ιP = β, so α = β.

4. (a) Show that r, reflection in the x-axis, is a linear mapping P → P .

(b) Show that for any θ ∈ R, the mapping ρθ of rotation by θ counterclockwise about the
origin, is a linear mapping P → P .

(c) For which a ∈ P is the mapping τa of translation by a a linear mapping?

[Recall that α : P → P is linear if p, q ∈ P =⇒ α(p + q) = α(p) + α(q) and p ∈ P, λ ∈ R =⇒
α(λp) = λα(p).]

Solution (a) If p =
(

x
y

)

∈ P then r(p) =
(

x
−y

)

= Rp where R =
(

1 0
0 −1

)

. So for p, q ∈ P

we have r(p + q) = R(p + q) = Rp + Rq = r(p) + r(q) and for p ∈ P, λ ∈ R we have
r(λp) = R(λp) = λRp = λr(p), using properties of matrix multiplication. So r is linear.

(b) If p ∈ P then ρθ(p) = Sp where S =
(

cos θ − sin θ
sin θ cos θ

)

. Replacing R with S and r with ρθ in the
argument of the previous paragraph shows that ρθ is linear.

(c) Any linear mapping maps the zero vector to itself. So if τa is linear, then 0 = τa(0) =
0 + a = a, so a = 0. Moreover, τ0 = ιP is the identity mapping, which is certainly linear. So
the answer is: τa is linear if and only if a = 0.

5. Let P be the plane P = R
2 and let M be the set of motions of P . We say that a motion α ∈ M

is proper if α = τa◦ρθ for some a ∈ P and θ ∈ R, and we say that α is improper if α = τa◦ρθ ◦r

for some a ∈ P and θ ∈ R.

(a) Explain why every motion is either proper or improper.

(b) If C is a circle in the plane and α ∈ M , show that α(C) is a circle in the plane.

(c) Let T be a circle in the plane P together with an arrow in
the counterclockwise direction, as shown. Give a geometric
argument to show that if α is a motion, then α is a proper
motion if and only if α(T ) is a circle with an arrow in the
counterclockwise direction. Give a similar statement for im-
proper motions and explain why it is correct.

T

[The arrow indicates the orientation of the circle. Thus the proper motions are the
orientation preserving motions.]

(d) Fill in the last column of the following table with “proper” or “improper”, and explain
why your answers are (always) correct.

α β α ◦ β

proper proper
proper improper

improper proper
improper improper
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Solution (a) This is what Theorem 18 says.

(b) Let q be the centre of the circle C and let s be the radius of C. Then C = {p ∈ P : d(p, q) =
s}, so

α(C) = {α(p) : d(p, q) = s}

= {r ∈ P : r = α(p), p ∈ P, d(p, q) = s}

= {r ∈ P : d(α−1(r), q) = s}

= {r ∈ P : d(r, α(q)) = s} since α ∈ M and α(α−1(r)) = r.

Hence α(C) is the circle centred at α(q) of radius s.

(b) First, let’s check this for the special cases α = ρθ and α = τa.

(i) Clearly [draw a picture!] ρθ(T ) is a circle with an arrow pointing counterclockwise.

(ii) Clearly [draw a picture!] τa(T ) is a circle with an arrow pointing counterclockwise.

(iii) And, ever so slightly less clearly, but still pretty clearly [draw another picture!] r(T ) is a
circle with an arrow pointing clockwise.

Now if α is a proper motion then α = τa◦ρθ for some a, θ, so α(T ) = τa(ρθ(T )). Since T ′ = ρθ(T )
is a circle with counterclockwise arrow by (i), α(T ) = τa(T

′) is a circle with counterclockwise
arrow by (ii).

If S is a circle with an arrow pointing clockwise, then

(i)’ Clearly [draw a picture!] ρθ(S) is a circle with an arrow pointing clockwise.

(ii)’ Clearly [draw a picture!] τa(S) is a circle with an arrow pointing clockwise.

If α is not a proper motion, then it is improper, so α = τa ◦ ρθ ◦ r so α(T ) = τa(ρθ(r(T ))).
Let S = r(T ). Then S is a circle with clockwise arrow by (iii), so by (i)’ and (ii)’, α(T ) =
τa(ρθ(S)) is a circle with clockwise arrow.

So we have shown:

α proper =⇒ α(T ) is a counterclockwise circle

and
α not proper =⇒ α(T ) is not a counterclockwise circle.

So α is proper ⇐⇒ α(T ) is a counterclockwise circle.

Hence α is improper ⇐⇒ α(T ) is not a counterclockwise circle. But α(T ) is a circle for every
motion M by (b), so if it is not a counterclockwise circle then it must be a clockwise circle. So
α is improper ⇐⇒ α(T ) is a clockwise circle.

(d) The last column reads “proper, improper, improper, proper”. The reason is that the proper
motions are those that preserve orientation of circles, and the improper motions are those that
reverse orientations, by (c). So the composition of an even number of improper motions with
any number of proper motions preserves orientations, so is proper, whereas the composition of
an odd number of improper motions with any number of proper motions reverses orientations,
so is improper.
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