Mathematics 1214: Introduction to Group Theory

Homework exercise sheet 2 Due 12:50pm, Friday 5th February 2010

1. Let * be an operation on a set S. Suppose that S contains an identity element for *. Prove that if x is an element of S which is invertible with respect to *, then x^{-1} is also invertible with respect to * and $(x^{-1})^{-1} = x$.

Solution Let e be the identity element for *. Recall that an element $a \in S$ is invertible, with inverse b, if and only if a * b = e = b * a. We know that $x * x^{-1} = e = x^{-1} * x$. Taking $a = x^{-1}$ and b = x shows that x^{-1} is invertible, with inverse x.

- 2. For each of the following sets G and operations *, determine whether or not (G, *) is a group. As always, you should prove that your answers are correct.
 - (a) $G = \mathbb{Z}, * = addition$
 - (b) $G = 7\mathbb{Z} = \{7n \colon n \in \mathbb{Z}\}, * = addition$
 - (c) $G = 7\mathbb{Z} + 4 = \{7n + 4 : n \in \mathbb{Z}\}, * = addition$
 - (d) $G = 7\mathbb{Z}, * =$ multiplication
 - (e) $G = \{e, f\}, x * y = e \text{ for all } x, y \in G$
 - (f) $G = \mathbb{C}^{\times} = \{z \in \mathbb{C} : z \neq 0\}, * =$ multiplication
 - (g) $G = \mathbb{R}^2$, * = vector addition
 - (h) $G = \mathbb{R}, * =$ multiplication

Solution (a) This is a group. Indeed,

- \mathbb{Z} is closed under addition, since $n, m \in \mathbb{Z} \implies n + m \in \mathbb{Z}$. Hence addition is an operation on \mathbb{Z} .
- For $n, m, k \in \mathbb{Z}$ we have (n+m)+k = n+(m+k). So addition is associative.
- n + 0 = 0 + n = n for all $n \in \mathbb{Z}$. Hence 0 is the identity element for $(\mathbb{Z}, +)$.
- If $n \in \mathbb{Z}$ then $-n \in \mathbb{Z}$, and n + (-n) = (-n) + n = 0. So every $n \in \mathbb{Z}$ is invertible with respect to addition.

(b) This is a group. Indeed,

- $7\mathbb{Z}$ is closed under addition, since $n, m \in \mathbb{Z} \implies 7n + 7m = 7(n + m) \in 7\mathbb{Z}$. Hence addition is an operation on \mathbb{Z} .
- For $n, m, k \in \mathbb{Z}$ we have (7n + 7m) + 7k = 7n + (7m + 7k). So addition is associative.
- 7n + 0 = 0 + 7n = 7n for all $n \in \mathbb{Z}$, and $0 = 7 \times 0 \in 7\mathbb{Z}$. Hence 0 is the identity element for $(7\mathbb{Z}, +)$.
- If $n \in \mathbb{Z}$ then $-7n \in \mathbb{Z}$, and 7n + (-7n) = (-7n) + 7n = 0. So every element of $7\mathbb{Z}$ is invertible with respect to addition.

(c) This is not a group, since it does not contain an identity element. Indeed, if there was some $n \in \mathbb{Z}$ such that e = 7n + 4 were the identity element for (G, +), then taking the element $4 \in G$ in the defining property of e, we would have e+4 = 4, so e = 0, so 7n + 4 = 0, so 7n = -4, so $n = -\frac{4}{7}$, so $n \notin \mathbb{Z}$ which contradicts our earlier assumption.

(d) This is not a group, since it does not contain an identity element. Indeed, if there was some $n \in \mathbb{Z}$ such that e = 7n were the identity element for (G, *), then taking the element $7 \in G$ in the defining property of e, we would have 7n * 7 = 7, i.e. 49n = 7, so $n = \frac{1}{7}$, so $n \notin \mathbb{Z}$ which contradicts our earlier assumption.

(e) This is not a group, since f is not invertible. Indeed, the identity element for (G, *) is clearly e, but f * y = e for every $y \in G$, so $f * y \neq f$ for every $y \in G$.

(f) This is a group. Indeed,

- \mathbb{C}^{\times} is closed under multiplication, since $z, w \in \mathbb{C}^{\times} \implies z * w \in \mathbb{C}^{\times}$ (the product of two non-zero complex numbers is always non-zero). Hence multiplication is an operation on \mathbb{C}^{\times} .
- For $z, v, w \in \mathbb{C}^{\times}$ we have (z * v) * w = z * (v * w). So multiplication is associative.
- z * 1 = 1 * z = z for all $z \in \mathbb{C}^{\times}$, and $1 \in \mathbb{C}^{\times}$. Hence 1 is the identity element for $(\mathbb{C}^{\times}, *)$.
- If $z \in \mathbb{C}^{\times}$ then $z \neq 0$, so $\frac{1}{z} \in \mathbb{C}^{\times}$, and $z * \frac{1}{z} = 1 = \frac{1}{z} * z$. So every $z \in \mathbb{C}^{\times}$ is invertible with respect to multiplication.

(g) This is a group. Indeed,

- \mathbb{R}^2 is closed under vector addition, since $v, w \in \mathbb{R}^2 \implies v + w \in \mathbb{R}^2$. Hence addition is an operation on \mathbb{R}^2 .
- For $v, w, x \in \mathbb{R}^2$ we have (v+w) + x = v + (w+x). So addition is associative.
- Writing 0 = (0,0) for the zero vector in \mathbb{R}^2 , we have v + 0 = 0 + v = v for all $v \in \mathbb{R}^2$. Hence 0 is the identity element for $(\mathbb{R}^2, +)$.
- If $v \in \mathbb{R}^2$ then $-v \in \mathbb{R}^2$, and v + (-v) = (-v) + v = 0. So every $v \in \mathbb{R}^2$ is invertible with respect to addition.

(h) This is not a group. While $1 \in \mathbb{R}$ is the identity element for $(\mathbb{R}, *)$, the equation 0 * y = 1 has no solutions $y \in \mathbb{R}$. So the element $0 \in \mathbb{R}$ is not invertible.

- 3. Let (G, *) be a group. Prove the following assertions:
 - (a) For each $x \in G$, the mapping $L_x \colon G \to G$, $y \mapsto x * y$ is a bijection.

- (b) Every element of G appears exactly once in each row of the Cayley table for *.
- (c) For each $x \in G$, the mapping $R_x \colon G \to G$, $y \mapsto y * x$ is a bijection.
- (d) Every element of G appears exactly once in each column of the Cayley table for *.

Solution (a) If $L_x(y_1) = L_x(y_2)$ then $x * y_1 = x * y_2$, so $y_1 = x^{-1} * (x * y_1) = x^{-1} * (x * y_2) = y_2$. Hence L_x is injective. If $y \in G$ then $y = L_x(x^{-1} * y)$, so L_x is surjective.

(b) The row labelled x in the Cayley table for * consists of the elements of the form $x * y = L_x(y)$ for $y \in G$. Since L_x is a bijection, this shows that every element of G appears exactly once in this row.

(c) If $R_x(y_1) = R_x(y_2)$ then $y_1 * x = y_2 * x$, so $y_1 = (y_1 * x) * x^{-1} = (y_2 * x) * x^{-1} = y_2$. Hence R_x is injective. If $y \in G$ then $y = R_x(y * x^{-1})$, so R_x is surjective.

(b) The column labelled x in the Cayley table for * consists of the elements of the form $y * x = R_x(y)$ for $y \in G$. Since R_x is a bijection, this shows that every element of G appears exactly once in this row.

- 4. Let $S = \{a, b, c\}$.
 - (a) How many elements does the set $S \times S$ contain?
 - (b) How many operations are there on S?
 - (c) Find the Cayley table for an operation \star on S such that (S, \star) is a group with identity element a.

[You should check that (S, \star) really is a group with identity element a].

- (d) Prove that the operation you have found is the only operation on S such that (S, \star) is a group with identity element a.
- (e) Write down the Cayley table of each operation * on S such that (S, *) is a group, and determine which of these operations is commutative.

Solution (a) We have

 $S \times S = \{(x, y) : x, y \in S\} = \{(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c)\}.$ So $S \times S$ contains nine elements.

(b) An operation on S is a mapping $S \times S \to S$. Since $S \times S$ contains 9 elements and S contains 3 elements and there are 3^9 mappings from a set with 9 elements to a set with 3 elements, there are $3^9 = 19683$ operations on S.

(c)

*	a	b	С
a	a	b	c
b	b	c	a
c	С	a	b

To check that (S, \star) is a group:

- The element a acts as an identity element for \star , since, from the table, we have $a \star x = x$ for all $x \in S$ (since the element in the (a, x) position of the Cayley table is $a \star x = x$) and similarly, by examining the first column of the Cayley table we see that $x \star a = x$ for all $x \in S$.
- To check associativity, we must show that (x ★ y) ★ z = x ★ (y ★ z) for all x, y, z ∈ S. So there are 3³ = 27 triples x, y, z ∈ {a, b, c} to check. If x = a then since a is an identity element, we have (x★y)★z = y★z and x★(y★z) = y★z. Similarly, if y = a or z = a then it is easy to check that (x ★ y) ★ z = x ★ (y ★ z). So it remains to check the cases when x, y, z ∈ {b, c}. There are 2³ = 8 of these:

x	y	z	$(x \star y) \star z$	$x \star (y \star z)$
b	b	b	$(b \star b) \star b = c \star b = a$	$b \star (b \star b) = b \star c = a$
b	b	c	$(b \star b) \star c = c \star c = b$	$b \star (b \star c) = b \star a = b$
b	c	b	$(b \star c) \star b = a \star b = b$	$b \star (c \star b) = b \star a = b$
b	c	c	$(b \star c) \star c = a \star c = c$	$b \star (c \star c) = b \star b = c$
c	b	b	$(c \star b) \star b = a \star b = b$	$c \star (b \star b) = c \star c = b$
c	b	c	$(c \star b) \star c = a \star c = c$	$c \star (b \star c) = c \star a = c$
c	c	b	$(c \star c) \star b = b \star b = c$	$c \star (c \star b) = c \star a = c$
c	c	c	$(c \star c) \star c = b \star c = a$	$c \star (c \star c) = c \star b = a$

So $(x \star y) \star z = x \star (y \star z)$ for every $x, y, z \in S$, so \star is associative.

• We have $a \star a = a$ so $a^{-1} = a$, and $b \star c = c \star b = a$, so $b = c^{-1}$ and $c = b^{-1}$. So every element of S has an inverse with respect to \star in S. Hence (S, \star) is a group.

(d) Suppose that * is any operation on S such at (S, *) is a group with identity element a. Then a * x = x = x * a for all $x \in S$, so we are forced to have the following entries of the Cayley table:

*	a	b	С
a	a	b	c
b	b		
c	С		

We know that each entry of S appears exactly once in the second row. So either b * b = c or b * b = a. If b * b = a then we must have b * c = c so that the second row contains every element of S exactly once; but then the third column would contain c twice, which is not allowed. So b * b = c and b * c = a:

*	a	b	С
a	a	b	С
b	b	С	a
c	с		

Now filling in the missing entries from the second and third columns gives c * b = a and c * c = b. So * has the same Cayley table as \star , so $* = \star$. This shows that \star is the only group operation with these properties.

(e) The only group operations are:

$*_a$	a	b	С	$*_b$	b	С	a	*c	С	a	b
a	a	b	С	b	b	c	a	c	С	a	b
b	b	С	a	c	c	a	b	a	a	b	С
С	с	a	b	a	a	b	c	b	b	c	a

Indeed, we've shown that if a is the identity operation, then there's only one group operation, $*_a = \star$. So there are only two other group operations, the operation $*_b$ obtained when b is the identity and the operation $*_c$ obtained when c is the identity. These are found by interchanging the roles of a, b, c as appropriate in the operation *.

All of these operations are abelian, as their Cayley tables are all symmetric in the main diagonal, so x * y = y * x.