Mathematics 1214: Introduction to Group Theory

Homework exercise sheet 2
Due 12:50pm, Friday 5th February 2010

1. Let * be an operation on a set S. Suppose that S contains an identity element
for x. Prove that if x is an element of S which is invertible with respect to *, then

x~ ! is also invertible with respect to * and (z7!)™! = z.

Solution Let e be the identity element for x. Recall that an element a € S
is invertible, with inverse b, if and only if a xb = e = b*x a. We know that
1 Ly 2. Taking @ = 2! and b = x shows that ! is invertible, with

T*kT S =e=xT

mverse x.

2. For each of the following sets G' and operations *, determine whether or not (G, %)
is a group. As always, you should prove that your answers are correct.

(a) G =Z, x = addition

(b) G=T7Z = {Tn: n € Z}, * = addition

c) G=TZ+4={Tn+4:n € Z}, » = addition
G = 77, * = multiplication

e) G={e, f},zxy=cforall z,y € G

(
(f) G =C* ={z € C: z # 0}, * = multiplication
g) G = R?, x = vector addition

)
)
(c)
(d)
)
)
)
)

(
(h

G = R, x = multiplication

Solution (a) This is a group. Indeed,
e 7 is closed under addition, since n,m € Z = n + m € Z. Hence addition
is an operation on Z.
e For n,m,k € Z we have (n+m)+k = n+ (m+k). So addition is associative.
e n+0=0+n=mn for all n € Z. Hence 0 is the identity element for (Z, +).
e If n € Zthen —n € Z, and n+ (—n) = (—n) +n = 0. So every n € Z is
invertible with respect to addition.
(b) This is a group. Indeed,
e 7Z is closed under addition, since n,m € Z = Tn+7m = 7(n+m) € 7Z.
Hence addition is an operation on Z.

e For n,m,k € Z we have (Tn 4+ 7Tm) + 7k = Tn + (Tm + 7k). So addition is
associative.

e m+0=0+7n="Tnforalln € Z, and 0 = 7 x 0 € 7Z. Hence 0 is the
identity element for (7Z,+).

o If n € Zthen —Tn € Z, and Tn+ (=7n) = (—=7n) 4+ 7n = 0. So every element
of 77 is invertible with respect to addition.



(c) This is not a group, since it does not contain an identity element. Indeed, if
there was some n € Z such that e = 7n + 4 were the identity element for (G, +),
then taking the element 4 € GG in the defining property of e, we would have e4+4 = 4,
soe=0,s0Tm+4=0,s07T =—4,son= —%, so n ¢ 7Z which contradicts our
earlier assumption.

(d) This is not a group, since it does not contain an identity element. Indeed, if
there was some n € Z such that e = 7n were the identity element for (G, ), then
taking the element 7 € GG in the defining property of e, we would have Tn x 7 =7,

ie.49n =7,s0n = %, so n & 7 which contradicts our earlier assumption.
(e) This is not a group, since f is not invertible. Indeed, the identity element
for (G, ) is clearly e, but f xy = e for every y € G, so f xy # f for every y € G.

(f) This is a group. Indeed,
e C* is closed under multiplication, since z,w € C* = zxw € C* (the

product of two non-zero complex numbers is always non-zero). Hence multi-
plication is an operation on C*.

e For z,v,w € C* we have (z *v) xw = 2z * (v * w). So multiplication is
assoclative.

o 2x1=1x2z=zforall z€ C*, and 1 € C*. Hence 1 is the identity element
for (C*, ).

e If z€ C*then z#0,50 2 € C*,and 2% =1= 1%z Soevery z € C* is
invertible with respect to multiplication.
(g) This is a group. Indeed,
e R? is closed under vector addition, since v,w € R? = v 4+ w € R?. Hence
addition is an operation on R2.
e For v, w,r € R? we have (v+w)+2z = v+ (w+x). So addition is associative.

e Writing 0 = (0,0) for the zero vector in R?, we have v+ 0 =0+ v = v for all
v € R% Hence 0 is the identity element for (R?, +).

e If v € R? then —v € R? and v + (—v) = (—v) + v = 0. So every v € R? is
invertible with respect to addition.

(h) This is not a group. While 1 € R is the identity element for (R, %), the equation
0 *y = 1 has no solutions y € R. So the element 0 € R is not invertible.

3. Let (G, ) be a group. Prove the following assertions:

(a) For each x € G, the mapping L,: G — G, y — z * y is a bijection.



(b) Every element of G appears exactly once in each row of the Cayley table for .
(¢) For each z € G, the mapping R,: G — G, y — y * x is a bijection.

(d) Every element of G appears exactly once in each column of the Cayley table
for .

Solution (a) If L,(y1) = L.(y2) then z xy; = x %y, so y1 = o L x (xx1y;) =
x7 % (2% y3) = yo. Hence L, is injective. If y € G then y = L (z7! % y), so L, is
surjective.

(b) The row labelled z in the Cayley table for % consists of the elements of the
form xxy = L,(y) for y € G. Since L, is a bijection, this shows that every element

of G appears exactly once in this row.

(&) TE Ry(1n) = Ra(y) then gy +2 = oz, s0 g1 = (3 x2) sz~ = (yprz) ez = g,
Hence R, is injective. If y € G then y = R,(y* 2~ !), so R, is surjective.

(b) The column labelled x in the Cayley table for * consists of the elements of
the form y x 2 = R,(y) for y € G. Since R, is a bijection, this shows that every
element of G appears exactly once in this row.

. Let S ={a,b,c}.

(a) How many elements does the set S x S contain?
(b) How many operations are there on S7

(c¢) Find the Cayley table for an operation x on S such that (S, %) is a group with
identity element a.
[You should check that (S, ) really is a group with identity element a].

(d) Prove that the operation you have found is the only operation on S such that
(S,*) is a group with identity element a.

(e) Write down the Cayley table of each operation % on S such that (S, %) is a
group, and determine which of these operations is commutative.

Solution (a) We have
SxS ={(x,y): z,y € S} ={(a,a),(a,b),(a,c),(ba),(bb),(b,c),(c,a),(cb),(cc)}.

So S x S contains nine elements.

(b) An operation on S is a mapping S x S — S. Since S x S contains 9 elements
and S contains 3 elements and there are 3° mappings from a set with 9 elements
to a set with 3 elements, there are 3° = 19683 operations on S.

()



To check that (5, *) is a group:

e We have axa =a so a”

e The element a acts as an identity element for %, since, from the table, we have
a*x =z for all x € S (since the element in the (a, ) position of the Cayley
table is a x x = ) and similarly, by examining the first column of the Cayley
table we see that x xa = x for all z € S.

To check associativity, we must show that (r xy) * 2z = x x (y x z) for all
r,y,z € S. So there are 3% = 27 triples , vy, 2 € {a,b,c} to check. If z = a
then since a is an identity element, we have (zxy)*z = y*z and xx(yxz) = y*z.
Similarly, if y = a or z = a then it is easy to check that (xxy)xz = x* (y*2).
So it remains to check the cases when z,y,z € {b,c}. There are 23 = 8 of
these:

(x*xy)*z zx (Y *2)
(bxb)*xb=cxb=a | bx(bxb)
(bxb)xc=cxkc=0b|bx(bxc)=bxa=1b
(bxc)xb=axb=>b|bx(cxb)=bxa=0b
(bxc)xc=a*xc=c|bx(ckc)=bxb=c
(cxb) e (
(cxb) ¢
(cxc) ¢

=bxc=a

ckb)xb=axb="0 bxb)=cxc="b
ckb)xc=axc=c bxc)=cxa=c
cxkc)xb=bxb=c cxb)=cxa=c
(cxc)xc=bxc=a|cx(cxc)=cxb=a

O 0O 0O 0 S oS8
0O 0 TS0 0 oo
0O 0 0 0 oW

So (zxy) %z =1z * (y*z) for every x,y,z € S, so % is associative.

l—qg,andbxc=cxb=a,sob=c'and c=b"".

So every element of S has an inverse with respect to x in S. Hence (.5, ) is
a group.

(d) Suppose that * is any operation on S such at (S,x*) is a group with identity
element a. Then axx = v = x % a for all x € S, so we are forced to have the
following entries of the Cayley table:

x | a b ¢
al a b ¢
b | b
c| c




We know that each entry of S appears exactly once in the second row. So either
bxb=corbxb=a. If bxb= a then we must have b * ¢ = ¢ so that the second
row contains every element of S exactly once; but then the third column would
contain ¢ twice, which is not allowed. So b*x b =c and bx c = a:

Now filling in the missing entries from the second and third columns gives cxb = a
and c* ¢ =b. So * has the same Cayley table as x, so x = . This shows that * is
the only group operation with these properties.

(e) The only group operations are:

x, | a b ¢ x| b ¢ a x| ¢ a b
al| a b ¢ b| b ¢ a c|lc a b

c a c|l c a b ala b c
cl c a b ala b c b| b ¢ a

Indeed, we’ve shown that if a is the identity operation, then there’s only one group
operation, %, = %. So there are only two other group operations, the operation
xp obtained when b is the identity and the operation *. obtained when c¢ is the
identity. These are found by interchanging the roles of a, b, ¢ as appropriate in the
operation .

All of these operations are abelian, as their Cayley tables are all symmetric in the
main diagonal, so z xy = y * x.



