
Mathematics 1214: Introduction to Group Theory

Homework exercise sheet 2

Due 12:50pm, Friday 5th February 2010

1. Let ∗ be an operation on a set S. Suppose that S contains an identity element
for ∗. Prove that if x is an element of S which is invertible with respect to ∗, then
x−1 is also invertible with respect to ∗ and (x−1)−1 = x.

Solution Let e be the identity element for ∗. Recall that an element a ∈ S
is invertible, with inverse b, if and only if a ∗ b = e = b ∗ a. We know that
x ∗x−1 = e = x−1 ∗x. Taking a = x−1 and b = x shows that x−1 is invertible, with
inverse x.

2. For each of the following sets G and operations ∗, determine whether or not (G, ∗)
is a group. As always, you should prove that your answers are correct.

(a) G = Z, ∗ = addition

(b) G = 7Z = {7n : n ∈ Z}, ∗ = addition

(c) G = 7Z + 4 = {7n + 4: n ∈ Z}, ∗ = addition

(d) G = 7Z, ∗ = multiplication

(e) G = {e, f}, x ∗ y = e for all x, y ∈ G

(f) G = C× = {z ∈ C : z 6= 0}, ∗ = multiplication

(g) G = R2, ∗ = vector addition

(h) G = R, ∗ = multiplication

Solution (a) This is a group. Indeed,

• Z is closed under addition, since n, m ∈ Z =⇒ n + m ∈ Z. Hence addition
is an operation on Z.

• For n, m, k ∈ Z we have (n+m)+k = n+(m+k). So addition is associative.

• n + 0 = 0 + n = n for all n ∈ Z. Hence 0 is the identity element for (Z, +).

• If n ∈ Z then −n ∈ Z, and n + (−n) = (−n) + n = 0. So every n ∈ Z is
invertible with respect to addition.

(b) This is a group. Indeed,

• 7Z is closed under addition, since n, m ∈ Z =⇒ 7n + 7m = 7(n + m) ∈ 7Z.
Hence addition is an operation on Z.

• For n, m, k ∈ Z we have (7n + 7m) + 7k = 7n + (7m + 7k). So addition is
associative.

• 7n + 0 = 0 + 7n = 7n for all n ∈ Z, and 0 = 7 × 0 ∈ 7Z. Hence 0 is the
identity element for (7Z, +).

• If n ∈ Z then −7n ∈ Z, and 7n + (−7n) = (−7n) + 7n = 0. So every element
of 7Z is invertible with respect to addition.



(c) This is not a group, since it does not contain an identity element. Indeed, if
there was some n ∈ Z such that e = 7n + 4 were the identity element for (G, +),
then taking the element 4 ∈ G in the defining property of e, we would have e+4 = 4,
so e = 0, so 7n + 4 = 0, so 7n = −4, so n = −4

7
, so n 6∈ Z which contradicts our

earlier assumption.

(d) This is not a group, since it does not contain an identity element. Indeed, if
there was some n ∈ Z such that e = 7n were the identity element for (G, ∗), then
taking the element 7 ∈ G in the defining property of e, we would have 7n ∗ 7 = 7,
i.e. 49n = 7, so n = 1

7
, so n 6∈ Z which contradicts our earlier assumption.

(e) This is not a group, since f is not invertible. Indeed, the identity element
for (G, ∗) is clearly e, but f ∗ y = e for every y ∈ G, so f ∗ y 6= f for every y ∈ G.

(f) This is a group. Indeed,

• C× is closed under multiplication, since z, w ∈ C× =⇒ z ∗ w ∈ C× (the
product of two non-zero complex numbers is always non-zero). Hence multi-
plication is an operation on C×.

• For z, v, w ∈ C× we have (z ∗ v) ∗ w = z ∗ (v ∗ w). So multiplication is
associative.

• z ∗ 1 = 1 ∗ z = z for all z ∈ C×, and 1 ∈ C×. Hence 1 is the identity element
for (C×, ∗).
• If z ∈ C× then z 6= 0, so 1

z
∈ C×, and z ∗ 1

z
= 1 = 1

z
∗ z. So every z ∈ C× is

invertible with respect to multiplication.

(g) This is a group. Indeed,

• R2 is closed under vector addition, since v, w ∈ R2 =⇒ v + w ∈ R2. Hence
addition is an operation on R2.

• For v, w, x ∈ R2 we have (v +w) +x = v + (w +x). So addition is associative.

• Writing 0 = (0, 0) for the zero vector in R2, we have v + 0 = 0 + v = v for all
v ∈ R2. Hence 0 is the identity element for (R2, +).

• If v ∈ R2 then −v ∈ R2, and v + (−v) = (−v) + v = 0. So every v ∈ R2 is
invertible with respect to addition.

(h) This is not a group. While 1 ∈ R is the identity element for (R, ∗), the equation
0 ∗ y = 1 has no solutions y ∈ R. So the element 0 ∈ R is not invertible.

3. Let (G, ∗) be a group. Prove the following assertions:

(a) For each x ∈ G, the mapping Lx : G→ G, y 7→ x ∗ y is a bijection.
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(b) Every element of G appears exactly once in each row of the Cayley table for ∗.
(c) For each x ∈ G, the mapping Rx : G→ G, y 7→ y ∗ x is a bijection.

(d) Every element of G appears exactly once in each column of the Cayley table
for ∗.

Solution (a) If Lx(y1) = Lx(y2) then x ∗ y1 = x ∗ y2, so y1 = x−1 ∗ (x ∗ y1) =
x−1 ∗ (x ∗ y2) = y2. Hence Lx is injective. If y ∈ G then y = Lx(x−1 ∗ y), so Lx is
surjective.

(b) The row labelled x in the Cayley table for ∗ consists of the elements of the
form x∗y = Lx(y) for y ∈ G. Since Lx is a bijection, this shows that every element
of G appears exactly once in this row.

(c) If Rx(y1) = Rx(y2) then y1∗x = y2∗x, so y1 = (y1∗x)∗x−1 = (y2∗x)∗x−1 = y2.
Hence Rx is injective. If y ∈ G then y = Rx(y ∗ x−1), so Rx is surjective.

(b) The column labelled x in the Cayley table for ∗ consists of the elements of
the form y ∗ x = Rx(y) for y ∈ G. Since Rx is a bijection, this shows that every
element of G appears exactly once in this row.

4. Let S = {a, b, c}.

(a) How many elements does the set S × S contain?

(b) How many operations are there on S?

(c) Find the Cayley table for an operation ? on S such that (S, ?) is a group with
identity element a.
[You should check that (S, ?) really is a group with identity element a].

(d) Prove that the operation you have found is the only operation on S such that
(S, ?) is a group with identity element a.

(e) Write down the Cayley table of each operation ∗ on S such that (S, ∗) is a
group, and determine which of these operations is commutative.

Solution (a) We have

S×S = {(x, y) : x, y ∈ S} = {(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c)}.

So S × S contains nine elements.

(b) An operation on S is a mapping S × S → S. Since S × S contains 9 elements
and S contains 3 elements and there are 39 mappings from a set with 9 elements
to a set with 3 elements, there are 39 = 19683 operations on S.

(c)
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? a b c

a a b c

b b c a

c c a b

To check that (S, ?) is a group:

• The element a acts as an identity element for ?, since, from the table, we have
a ? x = x for all x ∈ S (since the element in the (a, x) position of the Cayley
table is a ? x = x) and similarly, by examining the first column of the Cayley
table we see that x ? a = x for all x ∈ S.

• To check associativity, we must show that (x ? y) ? z = x ? (y ? z) for all
x, y, z ∈ S. So there are 33 = 27 triples x, y, z ∈ {a, b, c} to check. If x = a
then since a is an identity element, we have (x?y)?z = y?z and x?(y?z) = y?z.
Similarly, if y = a or z = a then it is easy to check that (x?y)?z = x? (y ?z).
So it remains to check the cases when x, y, z ∈ {b, c}. There are 23 = 8 of
these:

x y z (x ? y) ? z x ? (y ? z)
b b b (b ? b) ? b = c ? b = a b ? (b ? b) = b ? c = a
b b c (b ? b) ? c = c ? c = b b ? (b ? c) = b ? a = b
b c b (b ? c) ? b = a ? b = b b ? (c ? b) = b ? a = b
b c c (b ? c) ? c = a ? c = c b ? (c ? c) = b ? b = c
c b b (c ? b) ? b = a ? b = b c ? (b ? b) = c ? c = b
c b c (c ? b) ? c = a ? c = c c ? (b ? c) = c ? a = c
c c b (c ? c) ? b = b ? b = c c ? (c ? b) = c ? a = c
c c c (c ? c) ? c = b ? c = a c ? (c ? c) = c ? b = a

So (x ? y) ? z = x ? (y ? z) for every x, y, z ∈ S, so ? is associative.

• We have a ? a = a so a−1 = a, and b ? c = c ? b = a, so b = c−1 and c = b−1.
So every element of S has an inverse with respect to ? in S. Hence (S, ?) is
a group.

(d) Suppose that ∗ is any operation on S such at (S, ∗) is a group with identity
element a. Then a ∗ x = x = x ∗ a for all x ∈ S, so we are forced to have the
following entries of the Cayley table:

∗ a b c

a a b c

b b

c c
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We know that each entry of S appears exactly once in the second row. So either
b ∗ b = c or b ∗ b = a. If b ∗ b = a then we must have b ∗ c = c so that the second
row contains every element of S exactly once; but then the third column would
contain c twice, which is not allowed. So b ∗ b = c and b ∗ c = a:

∗ a b c

a a b c

b b c a

c c

Now filling in the missing entries from the second and third columns gives c∗ b = a
and c ∗ c = b. So ∗ has the same Cayley table as ?, so ∗ = ?. This shows that ? is
the only group operation with these properties.

(e) The only group operations are:

∗a a b c

a a b c

b b c a

c c a b

∗b b c a

b b c a

c c a b

a a b c

∗c c a b

c c a b

a a b c

b b c a

Indeed, we’ve shown that if a is the identity operation, then there’s only one group
operation, ∗a = ?. So there are only two other group operations, the operation
∗b obtained when b is the identity and the operation ∗c obtained when c is the
identity. These are found by interchanging the roles of a, b, c as appropriate in the
operation ∗.
All of these operations are abelian, as their Cayley tables are all symmetric in the
main diagonal, so x ∗ y = y ∗ x.
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