
Mathematics 1214: Introduction to Group Theory

Solutions to homework exercise sheet 10

1. (a) Determine, with justification (and without using the Fundamental Theorem of Abelian
Groups), which of the following groups are isomorphic, and which are not isomorphic.
[Hint: think about the orders of elements of these groups].

Z8, Z2 × Z4, Z4 × Z2, Z2 × Z2 × Z2.

(b) Explain how the Fundamental Theorem of Abelian Groups can be used to answer (a)
immediately.

Solution (a) Every element of Z2 × Z2 × Z2 has order 1 or 2. For example, ([1], [0], [1])2 =
([1]⊕ [1], [0]⊕ [0], [1]⊕ [1]) = ([0], [0], [0]) is the identity element of Z2 ×Z2 ×Z2, so ([1], [0], [1])
has order 2.

There’s an element of Z2 × Z4 of order 4, namely ([0]2, [1]4), but there’s no element of order 8
in Z2 × Z4.

The element [1]8 of Z8 has order 8.

Hence the three groups Z2 × Z2 × Z2, Z2 × Z4 and Z8 are not isomorphic, by Theorem 41(d).

On the other hand, it’s easy to show that G × H is always isomorphic to H × G, since the
mapping (g, h) 7→ (h, g) is an isomorphism. [Check this!] So Z2 × Z4 ≈ Z4 × Z2. And Z4 × Z2

is not isomorphic to any other group in the list, since if it were then Z2 ×Z4 would be too (by
transitivity of ≈), but we’ve already shown that this is not true.

(b) The prime factorisation of 8 is 8 = 23, so by the FTAG, every abelian group of order 8 is
isomorphic to Z23 or Z2 × Z22 or Z2 × Z2 × Z2, and these groups aren’t isomorphic. On the
other hand, if we write (n1, n2) = (2, 4) and (m1,m2) = (4, 2), then (n1, n2) is a permutation
of (m1,m2), so Z2 × Z4 is isomorphic to Z4 × Z2.

2. Use the Fundamental Theorem of Abelian Groups to list the abelian groups of order 37926 up
to isomorphism. In other words, write down a list of abelian groups of order 37926 such that
(1) no two groups in your list are isomorphic, but (2) every abelian group of order 37926 is
isomorphic to one of the groups in your list. Hint: 37926 = 2 · 32 · 72 · 43.

Solution By the FTAG, the groups are:

Z2×Z9×Z49×Z43, Z2×Z3×Z3×Z49×Z43, Z2×Z9×Z7×Z7×Z43, Z2×Z3×Z3×Z7×Z7×Z43.

3. Which of the following mappings are homomorphisms? For each homomorphism, compute its
kernel and its image, and determine if it is injective and/or surjective, and whether or not it is
an isomorphism.

(a) θ : R → R, x 7→ |x| [where, as usual, R = (R, +)]



(b) θ : R
× → R

×, x 7→ |x| [where, as usual, R
× = (R×, ·) is the group of non-zero real

numbers under multiplication]

(c) θ : Z8 → Z2 × Z4, [k]8 7→ ([k]2, [k]4) for 0 ≤ k < 8

(d) θ : Z → SL(2, R), n 7→
(

1 n
0 1

)

(e) exp: R → (0,∞), x 7→ exp(x)
[where (0,∞) is the group of positive real numbers under multiplication, and exp(x) is
the exponential of x, sometimes written as ex].

(f) θ : R × R → R, (x, y) 7→ x − y

Solution (a) This is not a homomorphism, since, for example, θ(−1 + 1) = θ(0) = 0 but
θ(−1) + θ(1) = 2.

(b) We have θ(xy) = |xy| = |x| · |y| = θ(x) · θ(y). So θ is a homomorphism. We have
ker θ = {x ∈ R

× : |x| = eR× = 1} = {1}, so θ is injective by Theorem 45. The image of θ is
{|x| : x ∈ R

×} = (0,∞), so θ is not surjective. Hence it’s not an isomorphism.

(c) We have θ([k]8 ⊕ [ℓ]8) = θ([k + ℓ]8) = ([k + ℓ]2, [k + ℓ]4) = ([k]2 ⊕ [ℓ]2, [k]4 ⊕ [ℓ]4) =
([k]2, [k]4)([ℓ]2, [ℓ]4) = θ([k]8)θ([ℓ]8), so θ is a homomorphism.
We have ker θ = {[k]8 : ([k]2, [k]4) = eZ2×Z4

= ([0]2, [0]4)} = {[0]8, [4]8}, and the image of θ

is θ(Z8) = {([0]2, [0]8), ([1]2, [1]8), ([0]2, [2]8), ([1]2, [3]8)} by direct computation. So θ is neither
injective nor surjective. So it’s certainly not an isomorphism.

(d) We have θ(n)θ(m) =
(

1 n
0 1

)(

1 m
0 1

)

=
(

1 n+m
0 1

)

= θ(n + m), so θ is a homomorphism (and
note that det

(

1 n
0 1

)

= 1, so θ is a well-defined mapping with codomain SL(2, R)). We have
ker θ = {n ∈ Z : θ(n) = eSL(2,R) =

(

1 0
0 1

)

} = {0}, so θ is injective, and the image of θ is
{
(

1 n
0 1

)

: n ∈ Z} which is clearly not all of SL(2, R), so θ is not surjective. So θ certainly isn’t
an isomorphism.

(e) We have exp(x + y) = ex+y = ex · ey = exp(x) exp(y), so exp is a homomorphism. We have
ker exp = {x ∈ R : exp(x) = e(0,∞) = 1} = {0}, so exp is injective, and the image of exp is
exp(R) = {ex : x ∈ R} = (0,∞). Hence exp is an isomorphism.

(f) We have θ((x, y)(x′, y′)) = θ((x + x′, y + y′)) = x + x′ − (y + y′) = x − y + x′ − y =
θ((x, y)) + θ((x′, y′)). So θ is a homomorphism. Its kernel is ker θ = {(x, y) : θ((x, y)) = eR =
0} = {(x, y) : x − y = 0} = {(x, x) : x ∈ R} (which is the graph of the function y = x) so θ is
not injective, and its image is θ(R) = {x − y : x, y ∈ R} = R, so θ is surjective. It’s not an
isomorphism (since it’s not injective).

4. Let G and H be two groups, let θ : G → H be a homomorphism and consider the group θ(G).

(a) Prove that if G is a cyclic group, then so is θ(G).

(b) Disprove the statement: “if n ∈ N and G contains an element of order n, then so does
θ(G)” by finding a counterexample.

Solution (a) Since G is cyclic, G = 〈a〉 = {ak : k ∈ Z} for some a ∈ G. So θ(G) = {θ(g) : g ∈
G} = {θ(ak) : k ∈ Z}. By Theorem 40(c), θ(G) = {θ(a)k : k ∈ Z} = 〈θ(a)〉. So θ(G) is cyclic.
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(b) Counterexample: take any n ∈ N and let G = H = Zn, and let θ : G → H, [k] 7→ [0]
for k = 0, 1, . . . , n − 1. This is a homomorphism and [1] is an element of G of order n, but
θ(G) = {[0]} does not contain any element of order n since o([0]) = 1.

5. Let θ : G → H be a homomorphism. For each h ∈ H, consider the preimage of h under θ,
which is the set P (h, θ) = {g ∈ G : θ(g) = h}.

(a) If G = H = Z6 and θ : G → H is the mapping θ([k]) = [2k] for 0 ≤ k < 6, show that θ is
a homomorphism. Then compute ker θ and find P (h, θ) for every h ∈ H.

(b) Now let G,H be any groups and let θ be any homomorphism G → H.

Let K = ker θ. Prove that for every h ∈ H,

either P (h, θ) = ∅ or P (h, θ) = Ka for any a ∈ P (h, θ).

Solution (a) We have θ([k] ⊕ [ℓ]) = θ([k + l]) = [2(k + ℓ)] and θ([k]) ⊕ θ([ℓ]) = [2k] ⊕ [2ℓ] =
[2k + 2ℓ] = [2(k + ℓ)]. So θ is a homomorphism. We have ker θ = {[k] : θ([k]) = eZ6

= [0]} =
{[k] : [2k] = [0]} = {[0], [3]} and so P ([0], θ) = ker θ = {[0], [3]}. Similar calculations give
P ([1], θ) = ∅, P ([2], θ) = {[1], [4]}, P ([3], θ) = ∅, P ([4], θ) = {[2], [5]} and P ([5], θ) = ∅.

(b) Let h ∈ H. If P (h, θ) 6= ∅, choose a ∈ P (h, θ). Then θ(a) = h.

We claim that P (h, θ) = Ka.

Firstly, if b ∈ P (h, θ), then θ(b) = h = θ(a), so eH = θ(b)θ(a)−1 = θ(b)θ(a−1) = θ(ba−1). Hence
ba−1 ∈ ker θ = K, and b = (ba−1)a ∈ Ka. Hence P (h, θ) ⊆ Ka.

Secondly, if x ∈ Ka then x = ka for some k ∈ K, so θ(x) = θ(ka) = θ(k)θ(a) = eHθ(a) =
θ(a) = h. So x ∈ P (h, θ). Hence Ka ⊆ P (h, θ).

So P (h, θ) = Ka.

This proves that if P (h, θ) 6= ∅ then P (h, θ) = Ka for every a ∈ P (h, θ). So we’re done.
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