UNIVERSITY OF DUBLIN

XMA1214

TRINITY COLLEGE

Faculty of Engineering, Mathematics and Science

SCHOOL OF MATHEMATICS

JF Mathematics JF & SF Two Subject Moderatorship SF Theoretical Physics Trinity Term 2010

MA1214 — INTRODUCTION TO GROUP THEORY

Dr. R. Levene

Credit will be given for the best 3 questions answered.

All questions have equal weight.

This sample is intended to give you some idea of the exam format, but should *not* be used as a guide to its content.

This is a 2-hour exam.

- 1. Let $n \in \mathbb{N}$ and consider the group (S_n, \circ) .
 - (a) [6 marks] Explain what it means to say that a permutation $\alpha \in S_n$ is *even*, and prove that if α are β are two even permutations in S_n , then $\alpha \circ \beta$ is also even.
 - (b) [2 marks] Consider the permutation $\gamma = (1\ 2\ 8\ 4)(4\ 3\ 2)(5\ 7)(1\ 4\ 2\ 3)$ in S_8 . Is γ an even permutation?
 - (c) [6 marks] Write γ as a product of disjoint cycles, and determine the subgroup

$$H = \langle \gamma \rangle$$

of S_8 .

- (d) [6 marks] Show that $H \times H$ is not a cyclic subgroup of $S_8 \times S_8$.
- Let P = ℝ² = { (^x/_y) : x, y ∈ ℝ } denote the plane. Fix an integer n ≥ 3. Let Q_n be the regular polygon in P with n vertices on the unit circle, one of which is at (¹/₀). Let (G, ∘) be the symmetry group of Q_n, so that G = D_n, the dihedral group of order 2n.

Let $\iota: P \to P$ be the identity mapping, let $r: P \to P$ be given by reflection in the *x*-axis, and let $\rho: P \to P$ be the mapping of anticlockwise rotation by $2\pi/n$ radians.

- (a) [4 marks] List the elements of G, writing each element using one or more of the mappings ι , ρ and r.
- (b) [5 marks] Find a subgroup of G of order n, and two different subgroups of G of order 2.
- (c) [5 marks] Prove that the relation \sim on P defined by

$$p \sim q \iff \exists \alpha \in G \colon \alpha(p) = q$$

is an equivalence relation.

(d) [6 marks] Show that the equivalence class $[\begin{pmatrix} 1\\0 \end{pmatrix}]_{\sim}$ is the set of vertices of Q_n , and find an equivalence class containing 2n elements.

- 3. (a) [8 marks] State and prove Lagrange's theorem.
 - (b) [6 marks] Show that if G is any group, then G is isomorphic to \mathbb{Z}_{29} if and only if |G| = 29.
 - (c) [6 marks] List all abelian groups of order 996, up to isomorphism. State the theorem you are using.

- 4. Let G be a group.
 - (a) [3 marks] Explain what is meant by a normal subgroup of G.
 - (b) [10 marks] If N is a normal subgroup of G, define the quotient group G/N. As part of this, you should give the definition of the usual operation on G/N and prove that it is a well-defined group operation.
 - (c) [7 marks] Give an example of a non-abelian group G and a normal subgroup N of G such that G/N is abelian, but G/N is not cyclic. Explain why your answer is correct.