MA1214 exam questions and solutions, Trinity term 2010

1. Let * be an operation on a set G. Suppose that (G,*) is a group, and consider a second operation \circledast on G, defined by

$$x \circledast y = x * y^{-1}$$
 for $x, y \in G$

where, as usual, y^{-1} denotes the inverse of y with respect to the operation *.

- (a) [3 marks] Explain what it means to say that (G, *) is a group.
- (b) [2 marks] Let e be the identity element of (G, *). Compute $x \circledast e$ and $e \circledast x$.
- (c) [8 marks] Prove that the following statements are equivalent:
 - (i). (G, \circledast) is a group
 - (ii). * is associative
 - (iii). $x = x^{-1}$ for all $x \in G$
 - (iv). * = *

[Hint: one way to do this is to give the proof in four steps, by first proving that (i) \Longrightarrow (ii), then that (ii) \Longrightarrow (iii), then that (iii) \Longrightarrow (iv), and finally that (iv) \Longrightarrow (i). You will be given marks for each step you successfully complete.]

- (d) [4 marks] Use (c) to show that if (G, \circledast) is a group, then (G, *) is abelian.
- (e) [3 marks] Give an example of a group (G, *) of order 4 such that (G, \circledast) is also a group, and explain why your answer is correct.

Solution (a) BOOKWORK (G,*) is a group if and only if

- \bullet * is an associative operation on G
- \bullet there is an element $e \in G$ which is an identity element for *
- $\bullet\,$ every element of G is invertible with respect to *
- (b) UNSEEN $x \circledast e = x * e^{-1} = x * e = e$ and $e \circledast x = e * x^{-1} = x^{-1}$.
- (c) UNSEEN (i) \Longrightarrow (ii): If (G, \circledast) is a group, then \circledast is certainly associative (by the definition of a group).
 - (ii) \Longrightarrow (iii): if \circledast is associative and $x \in G$, then

$$x^{-1} = e \circledast x = (e \circledast e) \circledast x = e \circledast (e \circledast x) = e \circledast x^{-1} = (x^{-1})^{-1} = x.$$

- (iii) \Longrightarrow (iv): We have $y=y^{-1}$ for all $y\in G$, so $x*y=x*y^{-1}=x\circledast y$ for all $x,y\in G$, so $*=\circledast$.
- (iv) \Longrightarrow (i): If $*=\circledast$ then $(G,*)=(G,\circledast)$, and (G,*) is a group by hypothesis. So (G,\circledast) is a group.
- (d) UNSEEN If $x, y \in G$ and (G, \circledast) is a group, then by (iii) we have $x * y = (x * y)^{-1} = y^{-1} * x^{-1} = y * x$. So (G, *) is abelian.
- (e) UNSEEN Every element of $\mathbb{Z}_2 \times \mathbb{Z}_2$ is equal to its own inverse. By (c), this does the job.

2. Let $P = \mathbb{R}^2 = \{\binom{x}{y} : x, y \in \mathbb{R}\}$ denote the plane. Fix an integer $n \geq 3$. Let Q_n be the regular polygon in P with n vertices on the unit circle, one of which is at $\binom{1}{0}$. Let (G, \circ) be the symmetry group of Q_n , so that $G = D_n$, the dihedral group of order 2n.

Let $\iota: P \to P$ be the identity mapping, let $r: P \to P$ be given by reflection in the x-axis, and let $\rho: P \to P$ be the mapping of anticlockwise rotation by $2\pi/n$ radians.

- (a) [4 marks] List the elements of G, writing each element using one or more of the mappings ι , ρ and r.
- (b) [8 marks] Let T be the intersection of Q_n with the x-axis.
 - (i). If n is even, what is $G_{(T)}$?
 - (ii). If n is odd, what is $G_{(T)}$?

Justify your answers.

- (c) [4 marks] Let $H = \langle \rho \rangle$. Prove that H is a normal subgroup of G. You may use the equation $r \circ \rho = \rho^{-1} \circ r$ without proof.
- (d) [4 marks] Explain why the quotient group G/H is an abelian group of order 2.

Solution (a) BOOKWORK We have

$$G = D_n = \{\iota, \rho, \rho^2, \dots, \rho^{n-1}, r, \rho \circ r, \rho^2 \circ r, \dots, \rho^{n-1} \circ r\}.$$

- (b) UNSEEN
 - (i). If n is even, then T contains two opposite vertices on the x-axis, so $r \in G_{(T)}$ (since r fixes every point on the x-axis) and $\rho_{\pi} = \rho^{n/2} \in G_{(T)}$. Clearly, no other rotation in G is in $G_{(T)}$, and since $G_{(T)}$ is a subgroup containing r, and $\rho^k \circ r \circ r = \rho^k$, the only other element apart from ι is $\rho^{n/2} \circ r$. So $G_{(T)} = \{\iota, \rho^{n/2}, r, \rho^{n/2} \circ r\}$.
 - (ii). If n is odd, then T contains $\binom{1}{0}$ and the midpoint p of the side of Q_n opposite $\binom{1}{0}$. No element of G maps p to $\binom{1}{0}$, since they are different distances from the origin, which is fixed by G. Hence $G_{(T)} = G_T$. The only elements of G fixing any point on the x-axis are ι and r, so $G_{(T)} = {\iota, r}$.
- (c) BOOKWORK/HOMEWORK Let $H = \langle \rho \rangle$. Then H is the subgroup generated by ρ , so it's certainly a subgroup of G. Let $x \in G$. If $x \in H$ then $xHx^{-1} = H$, so suppose $x \notin H$. Then $x = \rho^k \circ r$ for some $k \in \mathbb{Z}$, so if $h \in H$, then $h = \rho^m$ for some $m \in \mathbb{Z}$, so $xhx^{-1} = \rho^k \circ r \circ \rho^m \circ r \circ \rho^{-k} = \rho^{k-m} \circ \rho^{-k} \in H$. Hence H is normal in G.
- (d) UNSEEN Let $H = \langle \rho \rangle$. We have $|G| = |H| \cdot [G:H] = |H| \cdot |G/H|$ by Lagrange's theorem, so |G/H| = |G|/|H| = 2n/n = 2. Every group of order 2 is abelian. So G/H is abelian.

3. Let G be a finite group, and let us write the group operation on G as $(x,y) \mapsto xy$ and let e be the identity element of G. Let H be a subgroup of G and define a relation \sim on G by

$$a \sim b \iff ab^{-1} \in H \text{ for } a, b \in G.$$

- (a) [3 marks] Prove that \sim is an equivalence relation on G.
- (b) [3 marks] If $a \in G$, explain what is meant by the *right coset Ha*, and prove that $[a]_{\sim} = Ha$.
- (c) [3 marks] Show that if $a \in G$ then |Ha| = |H|.
- (d) [4 marks] Use a theorem about equivalence relations to deduce that |H| |G|. You should clearly state the theorem that you use.
- (e) [7 marks] Show that if A and B are subgroups of G with |A|=35 and |B|=44, then $A \cap B = \{e\}$.
- Solution (a) BOOKWORK If $x \in G$ then $xx^{-1} = e \in H$, since H is a subgroup of G. So $x \sim x$.

If
$$x \sim y$$
 then $xy^{-1} \in H \implies y^{-1}x = (xy^{-1})^{-1} \in H \implies y \sim x$.
If $x \sim y$ and $y \sim z$ then $xy^{-1}, yz^{-1} \in H \implies xy^{-1}yz^{-1} = xz^{-1} \in H \implies x \sim z$.

- (b) BOOKWORK $Ha = \{ha : h \in H\}$. If $b \in G$ then $b \in [a]_{\sim} \iff ab^{-1} \in H \iff a = hb$ for some $h \in H \iff a \in Hb$.
- (c) BOOKWORK Let $\alpha: H \to Ha$, $h \mapsto hb$. Then α is one-to-one, since $h_1a = h_2a \iff h_1 = h_2 \iff h_1b = h_2b$, and it is clearly onto. So it is a bijection, so |H| = |Ha|.
- (d) BOOKWORK The theorem says that the equivalence classes of an equivalence relation on a set form a partition of that set. So the equivalence classes $[a]_{\sim} = Ha$ partition G; since G is finite, this gives $G = Ha_1 \cup \cdots \cup Ha_k$ for some $a_1, \ldots, a_k \in G$. Since there are no overlaps in a partition and $|Ha_i| = |H|$, this gives |G| = k|H|. So |H| |G|.
- (e) UNSEEN Since A and B are subgroups of G, their intersection $H = A \cap B$ is a subgroup of G (we proved this in an exercise). So H is a subgroup of A and of B. So $|H| \mid |A| = 35 = 5 \cdot 7$ and $|H| \mid |B| = 44 = 2^2 \cdot 11$. But the only integer dividing 35 and 44 is 1. So |H| = 1, so $H = \{e\}$.

- 4. Let G and H be groups, and let $\theta: G \to H$ be a mapping.
 - (a) [3 marks] What does it mean to say that θ is a homomorphism? What does it mean to say that θ is an isomorphism?
 - (b) [5 marks] Show that if θ is an isomorphism, then

G is abelian $\iff H$ is abelian.

- (c) [5 marks] By providing a counterexample, show that the conclusion of (b) may be false if θ is merely assumed to be a homomorphism.
- (d) [7 marks] Suppose that θ is a surjective homomorphism. Prove that $K = \ker \theta$ is a normal subgroup of G, and that the quotient group G/K is isomorphic to H.
- Solution (a) BOOKWORK θ is a homomorphism if $\theta(ab) = \theta(a)\theta(b)$ for all $a, b \in G$. θ is an isomomorphism if θ is a bijective homomorphism.
 - (b) BOOKWORK Suppose that G is abelian. Then $\theta(a)\theta(b) = \theta(ab) = \theta(ba) = \theta(b)\theta(a)$. So xy = yx for all $x, y \in \theta(G)$. Since $\theta(G) = H$, this shows that H is abelian.
 - Conversely, suppose that H is abelian. Since θ^{-1} is an isomorphism $H \to G$, the previous paragraph shows that G is abelian.
 - (c) UNSEEN Let $H = \{e\}$ and let $G = S_3$. Then G is not abelian, and $\theta \colon G \to H$, $\alpha \mapsto e$ is a homomorphism, but H is abelian.
 - (d) BOOKWORK If $s, t \in K$ then $\theta(st^{-1}) = \theta(s)\theta(t)^{-1} = ee^{-1} = e$, so $st^{-1} \in K$, so K is a subgroup of G. Also, if $k \in K$ then $\theta(k) = e$, so $\theta(gkg^{-1}) = \theta(g)\theta(k)\theta(g)^{-1} = \theta(g)\theta(g)^{-1} = e$. So K is a normal subgroup of G. Let $\phi \colon G/K \to H$, $Kg \mapsto \theta(g)$. Then ϕ is well-defined, since $Kg_1 = Kg_2 \iff g_1g_2^{-1} \in K \iff \theta(g_1g_2^{-1}) = e \iff \theta(g_1) = \theta(g_2)$. This also shows that ϕ is injective, and it is surjective since θ is surjective. Finally, θ is a homomorphism, since $\theta((Kg_1)(Kg_2)) = \theta(Kg_1g_2) = \theta(g_1g_2) = \theta(g_1)\theta(g_2) = \phi(Kg_1)\phi(Kg_2)$. So θ is an isomorphism $G/K \to H$, so these groups are isomorphic.