Tutorial 3: Tensor products of representations. Representations of S_n and Young diagrams.

Exercise 1. Our aim is the following isomorphism of S_n -representations, $n \ge 3$:

 $V_{n-1,1} \cong V^{st}.$

- 1. For $1 \le i \le n$, denote by T_i the Young tableau of shape (n 1, 1) having *i* in the second row, and the remaining numbers from $\{1, \ldots, n\}$ arranged in the increasing order in the first row. Show that their classes $[T_i]$ form a complete list of Young tabloids of shape (n 1, 1), without repetition.
- 2. Recall that a permutation $\sigma \in S_n$ acts on a Young tableau by acting on each of its cells. Compute $\sigma \cdot [T_i]$ for any $1 \le i \le n$.
- 3. Identify the above S_n -representation structure on the vector space $\mathbb{C}M_{n-1,1}$ of linear combinations of Young tabloids shape (n-1,1).
- 4. Determine the column groups C_{T_j} of all the Young tableaux T_j .
- 5. Express the Young polytabloids \mathcal{E}_{T_i} in terms of the basis $(e_{[T_i]})_{1 \le i \le n}$ of $\mathbb{C}M_{n-1,1}$.
- 6. Show that the \mathcal{E}_{T_j} span a sub-representation of $\mathbb{C}M_{n-1,1}$ isomorphic to the standard representation of S_n .

Exercise 2. Representations of S_6

- 1. Write down all partitions of 6.
- 2. How many irreps does S_6 have?
- 3. To what partitions do the irreps V^{tr} , V^{sgn} , V^{st} , and $V^{st} \otimes V^{sgn}$ correspond?
- 4. Write down the characters of these four irreps.
- 5. Determine the degree of the irrep $V_{2,2,2}$ using two methods:
 - (a) first, by counting standard Young tableaux;
 - (b) then, by the hook length formula.
- 6. Identify the representation $V_{2,2,2} \otimes V^{\text{sgn}}$.
- 7. For which irreps V of S_6 does one have an isomorphism of representations $V \cong V \otimes V^{\text{sgn}}$? Give the answer in terms of Specht irreps.
- 8. Determine the degrees of all irreps of S_6 using your favourite method(s).
- 9. Check that the sum of the squares of these degrees takes the expected value.
- 10. Recall the classical symmetric group inclusions $\iota_n \colon S_n \to S_{n+1}$, given by

$$\iota(\sigma)(k) = \begin{cases} \sigma(k), & k \le n; \\ n+1, & k=n+1. \end{cases}$$

Decompose into irreps the representations $\iota_5^*(V_{2,2,2})$ of S_5 , and $\iota_4^*\iota_5^*(V_{2,2,2})$ of S_4 .

- 11. Compute the value of the character χ of $V_{2,2,2}$ on Id, (23), and (23)(45). Show that $\chi((23)(45)(16)) \in \{3,5\}$. (*Hint:* Use the explicit basis for $V_{2,2,2}$ given by the Young polytabloids of the standard Young tableaux of shape (2, 2, 2).)
- 12. Using computations from Question 11, give a new proof of the fact that the irreps $V_{2,2,2}$ and $V_{2,2,2} \otimes V^{\text{sgn}}$ are non-isomorphic.
- 13. What are the degrees of the reps $\Lambda^2(V^{st}), S^2(V^{st}), \Lambda^2(V_{2,2,2}), S^2(V_{2,2,2})$?
- 14. Compute the value of the characters of $\Lambda^2(V^{st})$, $S^2(V^{st})$, $\Lambda^2(V_{2,2,2})$, and $S^2(V_{2,2,2})$, on Id, (23), (23)(45), and (23)(45)(16). (For the last permutation, it suffices to give two possible values.)

- 15. Deduce from these computations that each of the four reps from the previous point has an irreducible direct summand of degree 9 or 10.
- 16. How would you check that $\Lambda^2(V^{st})$ is an irrep? (You do not have to carry out the computation. Simply explain what formulas and properties you would use.) From now on, you can assume it.
- 17. Describe all irreps of degree 10.
- 18. Check that $S^2(V^{st})$ contains an irreducible direct summand of degree 9. (*Hint:* Use Questions 15 and 17, and evaluate the characters for possible decompositions of $S^2(V^{st})$ on (23)(45), then on (23), then on (123).)
- 19. Show that the second irrep of degree 9 can be found inside $S^2(V^{st}) \otimes V^{sgn}$.

Exercise 3. Our aim is to show that, given a faithful representation (V, ρ) of a finite group G, any irrep W of G is contained in some of the tensor powers $V^{\otimes n}$. Recall that

- a representation $\rho: G \to \operatorname{Aut}_{\mathbb{C}}(V)$ is called *faithful* if the map ρ is injective;
- the tensor powers $V^{\otimes n}$ are defined as $(\dots ((V \otimes V) \otimes V) \dots) \otimes V$, with n copies of V.
- 1. Express the character $\chi^{V^{\otimes n}}$ in terms of χ^{V} .
- 2. For any representations V and W of a finite group G, prove the following equality of formal power sums:

$$\sum_{n\geq 0} ((\chi^V)^n, \chi^W) t^n = \frac{1}{\#G} \sum_{\mathcal{C}\in \operatorname{Conj}(G)} \frac{\#\mathcal{C}\,\overline{\chi^W(\mathcal{C})}}{1-\chi^V(\mathcal{C})t}$$

Here $\chi(\mathcal{C})$ is defined as $\chi(g)$ for any $g \in \mathcal{C}$.

- 3. Now suppose V faithful, and W irreducible and not contained in any $V^{\otimes n}$. Show that all coefficients of the formal power series $\sum_{n\geq 0} ((\chi^V)^n, \chi^W) t^n$ are then zero. 4. Prove that $\chi^V(\mathcal{C}) = \dim_{\mathbb{C}}(V)$ if and only if \mathcal{C} is the class of 1.
- 5. Deduce from this that $\sum_{\mathcal{C}\in \operatorname{Conj}(G)} \frac{\#\mathcal{C}_{\chi^{W}(\mathcal{C})}}{1-\chi^{V}(\mathcal{C})t}$ cannot be the zero power series.
- 6. Conclude.
- 7. Example: Show that for any group G, its left regular representation V^{reg} is faithful. Up to what power n should one go for the assertion we have just shown to hold true?
- 8. Example: Show that for any symmetric group S_k , its standard representation V^{st} is faithful. For S_3 , up to what power n should one go for the assertion we have just shown to hold true? For S_4 , is it sufficient to go up to n = 2?