
TCD – Hilary term 2017 MA3416: Group Representations

Tutorial 2: Characters

Exercise 1. Recall that, given a surjective group morphism φ : G→ H, there is a map
φ∗ : Irrep(H)→ Irrep(G),

ρ 7→ ρφ

preserving degrees (Tutorial 1). Using characters, prove that φ∗ is injective.

Solution. Suppose the contrary: non-isomorphic irreps (Vi, ρi) of H are sent by φ∗ to isomorphic
irreps (Vi, ρiφ) of G; here i ∈ {1, 2}. For characters, this means χ(V1,ρ1φ) = χ(V2,ρ2φ). Let us
prove that then χ(V1,ρ1) = χ(V2,ρ2), which is impossible since our irreps are non-isomorphic (see
Theorem 3).

Take any h ∈ H, and using the surjectivity of φ write it as φ(g) for some g ∈ G. Then
χ(V1,ρ1)(h) = tr(ρ1(h)) = tr(ρ1φ(g)) = χ(V1,ρ1φ)(g) = χ(V2,ρ2φ)(g) = · · · = χ(V2,ρ2)(h).

Exercise 2. Suppose that the character of a representation V of a finite group G vanishes on
all g 6= 1. Show that V is then isomorphic to a direct sum V reg ⊕ · · · ⊕ V reg of several copies
of the regular representation.

Solution. Decompose V into irreps: V ∼= ⊕miVi, giving χV = ∑
miχ

Vi . Recall the basic
properties of V reg: χV reg(g) = δg,1#G, and V reg ∼= ⊕ dimC(Vi)Vi. The first one gives χV =
dimC(V )

#G χV
reg . Since the characters of irreps are linearly independent class functions, the second

property then yields mi = dimC(V )
#G dimC(Vi) for all i. One of the irreps, say V1, is the trivial

one. Then dimC(V )
#G = m1 is a positive integer. Hence χV = m1χ

V reg = χm1V reg . The reps V and
m1V

reg have the same character, and are thus isomorphic.

Exercise 3. (Character table for S4)
1. List all conjugacy classes of S4. Compute their size.

Solution. There is one conjugacy class per cycle type (Theorem 7). Further, the number
of distinct k-cycles in Sn is n(n−1)···(n+1−k)

k
(count the number of possible choices for the

first, the second, . . . element of your cycle, and divide by k since your cycle can be read
starting from any place). Finally, there are 3 elements of the cycle type (2, 2) (uniquely
defined by where they send, say, 1).

#C 1 6 8 6 3
C [Id] [(12)] [(123)] [(1234)] [(12)(34)]

Double-checking: 1 + 6 + 8 + 6 + 3 = 24 = #S4.
2. How many (pairwise non-isomorphic) irreducible representations does S4 have?

Solution. # Irrep(S4) = # Conj(S4) = 5.
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3. Determine all 1-dimensional representations.

Solution. We are looking for group maps ρ : S4 → C∗. As usual, they coincide with their
characters, and thus are class functions. In particular, they take the same value ω on all
2-cycles. (12)2 = Id =⇒ ω2 = 1 =⇒ ω = ±1. (123) = (12)(23) =⇒ ρ((123)) = ω2 = 1.
(1234) = (123)(34) =⇒ ρ((1234)) = 1ω = ω. ρ((12)(34)) = ω2 = 1. There are thus only
2 possibilities for ρ: one with ω = 1, which yields the trivial rep.; and one with ω = −1,
which yields the sign rep.: ρ(σ) = sgn(σ) is the sign of the permutation σ.

#C 1 6 8 6 3

V
C [Id] [(12)] [(123)] [(1234)] [(12)(34)]

V tr 1 1 1 1 1
V sgn 1 −1 1 −1 1

4. Find the dimensions of the remaining irreducible representations.

Solution. 1 + 1 + d2
3 + d2

4 + d2
5 = #S4 = 24 =⇒ d2

3 + d2
4 + d2

5 = 22, with all di ≥ 2. One
cannot have di ≥ 4 for some i, since this would give d2

3 + d2
4 + d2

5 ≥ 4 + 4 + 16 = 24.
So all di ∈ {2, 3}. By a direct verification, the only possibility (up to re-ordering) is
d3 = 2, d4 = d5 = 3.

5. Recall the permutation representation V perm = ⊕4
i=1Cei, with σ · ei = eσ(i). Show that

the vector e1 + e2 + e3 + e4 is a basis of a sub-representation L, isomorphic to V tr.

Solution. For all σ ∈ S4, σ ·
∑
ei = ∑

eσ(i) = ∑
ei. Moreover, the vector e1 + e2 + e3 + e4

is non-zero.
6. Explain why L admits an S4-invariant complement. Denote it by (V st, ρst). It is the

standard representation, which you saw in Lecture 2 for S3, and which you will encounter
for all groups Sn in the homework.

Solution. It follows from Maschke’s theorem.
7. Use V perm ∼= V tr ⊕ V st to compute the degree and the character of V st.

Solution. χV st = χV
perm − χV tr , χV perm(σ) is the number of elements of {1, 2, 3, 4} fixed

by σ. The degree of V st is χV st(Id) = 3.
#C 1 6 8 6 3

V
C [Id] [(12)] [(123)] [(1234)] [(12)(34)]

V tr 1 1 1 1 1
V sgn 1 −1 1 −1 1
V st 3 1 0 −1 −1

V tr ⊕ V st ∼= V perm 4 2 1 0 0

8. Deduce that V st is irreducible.

Solution. Use the irreducibility criterion (Theorem 4):

(χV st , χV st) = 1
#S4

∑
C∈Conj(S4)

#C|χV st(σC)|2 = 1
24(1 ∗ 9 + 6 ∗ 1 + 8 ∗ 0 + 6 ∗ 1 + 3 ∗ 1) = 1.

Here σC is any permutation from the conjugacy class C.
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9. Consider the vector space V st with a different S4-action: ρst,sgn(σ) = sgn(σ)ρst(σ). Show
that this defines an S4-representation. Denote it by V st,sgn.

Solution. ρst,sgn(σσ′) = sgn(σσ′)ρst(σσ′) = (sgn(σ) sgn(σ′))(ρst(σ)ρst(σ′))
= (sgn(σ)ρst(σ))(sgn(σ′)ρst(σ′)) = ρst,sgn(σ)ρst,sgn(σ′).

10. Using characters, check that V st,sgn is an irreducible representation, and V st,sgn � Vst.

Solution. Using the linearity of the trace, one writes χV st,sgn(σ) = tr(ρst,sgn(σ)) =
tr(sgn(σ)ρst(σ)) = sgn(σ) tr(ρst(σ)) = sgn(σ)χV st(σ). It differs from χV

st by signs only,
so (χV st,sgn

, χV
st,sgn)(χV st , χV st) = 1. Finally, χV st,sgn 6= χV

st since they differ on (12).
11. Complete the character table by computing the character of the remaining irreducible

representation, denoted by W . (Use the regular representation.)

Solution. #C 1 6 8 6 3

V
C [Id] [(12)] [(123)] [(1234)] [(12)(34)]

V tr 1 1 1 1 1
V sgn 1 −1 1 −1 1
V st 3 1 0 −1 −1

V st,sgn 3 −1 0 1 −1
W 2 0 −1 0 2

V tr ⊕ V st ∼= V perm 4 2 1 0 0
V tr ⊕ V sgn ⊕ 2W ∼= V reg 24 0 0 0 0
⊕3V st ⊕ 3V st,sgn

12. Check that the scalar products (χW , χW ) and (χW , χV st) take the expected values.
13. Check also the orthogonality relations for some of the columns.

In the remainder of the exercise we will describe W explicitly.
14. Recall how to realise S4 as the group of symmetries of the regular tetrahedron.

Solution. A symmetry of the regular tetrahedron is entirely determined by how it per-
mutes its 4 vertices. Moreover, any vertex permutation is realised by a symmetry.

15. Verify that this S4-action permutes the three segments connecting the midpoints of the
opposite edges:

Solution. A symmetry permutes edges, hence their midpoints. Moreover, opposite edges
remain such after a symmetry.

16. Deduce from this a group morphism π : S4 → S3.

Solution. The effect of a composition of symmetries on the “midpoint segments” is the
action of the first symmetry composed with the action of the second one. Hence sending
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a tetrahedron symmetry to the induced permutation of the “midpoint segments” defines
the desired group morphism.

17. For a 2-cycle / a 3-cycle σ of S4, compute π(σ).

Solution. Number the vertices and the midpoints segments as below:

42

3

1

1 3 2

12

Now, the permutation (12) fixes the midpoint of the edge 12, and hence the segment 1 .
Further, it swaps the edges (13) and (23), and hence their midpoints; so it swaps the
segments 2 and 3 . Conclusion: π((12)) = (23). Similarly, (123) rotates the triangle
123, giving π((123)) = (123).

18. Conclude that π is surjective.

Solution. Repeating the above argument for different 2- and 3-cocycles of S4, one sees
that all 2- and 3-cocycles of S3 are in the image of π. Also π(Id) = Id.

19. One then has the injective map π∗ : Irrep(S3)→ Irrep(S4), (V, ρ) 7→ (V, ρπ) (Exercise 1).
Identify the image by π∗ of the three irreducible representations of S3.

Solution. Comparing the character tables, one sees that π∗ send the trivial and the sign
irreps of S3 to the trivial and the sign irreps of S4 respectively. The standard irrep is sent
to W (which is clear already at the level of degrees: W is the only irrep of S4 of degree 2,
and π∗ preserves the degrees). Thus W gets a concrete realisation: it is the vector space
{∑3

i=1 αiei|αi ∈ C,
∑
αi = 0}, with σ · (∑

αiei) = ∑
αieπ(σ)(i).

Remark: There are other ways to describe W . One can see S4 as the symmetries of a cube
(by looking at its actions on the four diagonals), and send it to S3 by tracing its action on the
three segments connecting the midpoints of the opposite faces. Alternatively, one can consider
the action of S4 on itself by conjugation, and observe that it permutes the three permutations
of cycle type (2, 2).

Exercise 4. (Character table for A4)
Recall that the alternating group A4 is the group of all even permutations in S4.
1. List all conjugacy classes of A4. Compute their size.

Solution. Since A4 is a sub-group of S4, its conjugacy classes are sub-classes of those
for S4. The classes of (12) and (1234) disappear, since these permutations are odd. The
class of (12)(34) lies entirely in A4, and becomes a whole conjugacy class of A4:

((123))((12)(34))((123))−1 = (23)(14),
((123))((23)(14))((123))−1 = (13)(24).
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The class of (123) also lies entirely in A4, but splits into two conjugacy classes of A4,
[(123)] = {(123), (134), (432), (421)} and [(132)] = {(132), (143), (423), (412)}. The fact
that the permutations inside each class are conjugated follows from (bad)(abc)(bad)−1 =
(dac), (abd)(abc)(abd)−1 = (bdc), where {a, b, c, d} = {1, 2, 3, 4}. Further, suppose that
σ(123)σ−1 = (132) for some σ ∈ S4. Theorem 7 tells that σ should send 1, 2 and 3 either
to 1, 3 and 2, or to 3, 2 and 1, or to 2, 1 and 3 (in this order). Then σ is one of (32), (13)
and (12), neither of which lie in A4. Hence (123) � (132) in A4.

#C 1 4 4 3
C [Id] [(123)] [(132)] [(12)(34)]

Double-checking: 1 + 4 + 4 + 3 = 12 = #A4.
2. Find the dimensions of all irreducible representations.

Solution. Taking into consideration the trivial rep., we have 1 +d2
2 +d2

3 +d2
4 = #A4 = 12,

so d2
2 + d2

3 + d2
4 = 11. If all di ≤ 2, then by parity considerations either 0 or 2 of them

equal 2; neither case gives the desired sum of squares. If d4 ≥ 3, then d2
2 + d2

3 ≤ 2, so
d2 = d3 = 1, d4 = 3.

We will now construct the character table for A4 using three different methods, each of them
having a pedagogical interest.

Method 1.
3. Check the following relations in A4:

(123)3 = Id;
(123)(134) = (234);
(123)(124) = (24)(13).

4. Using them, determine all 1-dimensional representations of A4.

Solution. Put ω = ρ((123)), ω′ = ρ((132)). The above relations translate as
ω3 = 1;
ω2 = ω′;
ρ((24)(13)) = ωω′ = ω3 = 1.

There are 3 possible values for ω: 1, ω0 and ω2
0, where ω0 = e

2πi
3 is the primitive cubic

root of 1. We have shown that ω entirely determines our irrep, and that we should have
3 different irreps of degree 1. Hence all the 3 possibilities for ω are realisable.

5. Using the regular representation, compute the character of the remaining irrep.

Solution.

#C 1 4 4 3

V
C [Id] [(123)] [(132)] [(12)(34)]

V tr 1 1 1 1
V2 1 ω0 ω2

0 1
V3 1 ω2

0 ω0 1
V4 3 0 0 −1

V tr ⊕ V2 ⊕ V3 ⊕ 3V4 ∼= V reg 12 0 0 0
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Method 2.
6. Consider the inclusion map ι : A4 → S4. Recall the associated map ι∗ : Rep(S4) →

Rep(A4), (V, ρ) 7→ (V, ρι). For all irreps of S4, find the characters of their image by ι∗.
What irreps of A4 are obtained this way?

Solution.

#C 1 4 4 3

V
C [Id] [(123)] [(132)] [(12)(34)]

ι∗V tr 1 1 1 1
ι∗V sgn 1 1 1 1
ι∗V st 3 0 0 −1

ι∗V st,sgn 3 0 0 −1
ι∗W 2 −1 −1 2

Computing the inner product of these characters with themselves, one checks that ι∗V tr =
ι∗V sgn and ι∗V st = ι∗V st,sgn are irreps, while ι∗W is not. The first one is the trivial irrep.

7. Show that ι∗(W ) decomposes as L1⊕L2, where the sub-representations Lj have degree 1.

Solution. By dimension considerations, this is the only possibility for a reducible rep. of
degree 2.

8. Using characters, prove that neither L1 ∼= L2 nor Lj ∼= V tr is possible.

Solution. The first case would give χL1 = 1
2χ

ι∗(W ), and the second one χL1 or χL2 =
χι

∗(W )−χV tr . In any case, some values of these characters would not be roots of 1, which
is impossible for degree 1 reps.

9. Conclude that V tr, L1, L2 is the complete list of degree 1 irreps of A4.

Solution. We have seen that these are pairwise non-isomorphic degree 1 irreps, and that
A4 has precisely 3 of them (question 2).

10. Using ι∗(W ) ∼= L1 ⊕ L2 and basic properties of characters, finish the character table.

Solution. Let us recall what we have already established:

#C 1 4 4 3

V
C [Id] [(123)] [(132)] [(12)(34)]

V tr 1 1 1 1
L1 1 x1 x2 x3
L2 1 x′1 x′2 x′3

ι∗V st,sgn 3 0 0 −1
L1 ⊕ L2 ∼= ι∗W 2 −1 −1 2

The decomposition ι∗(W ) ∼= L1 ⊕ L2 implies x1 + x′1 = x2 + x′2 = −1 and x3 + x′3 = 2.
Further, all the six unknown values are roots of 1. This already yields x3 = x′3 = 1. Now,
(χV tr , χL1) = (χV tr , χL2) = 0 translates as x1 + x2 = x′1 + x′2 = −1. Thus x′2 = x1, x

′
1 =

x2 = −1 − x1. Since x1 and −1 − x1 are roots of 1, one has 1 = (−1 − x1)(−1− x1) =
1 + |x1|2 + (x1 + x1) = 2 + 2 Re(x1) =⇒ Re(x1) = −1

2 =⇒ x1 = −1
2 ±

√
3

2 i, which are
precisely the values ω0 and ω2

0 obtained in Method 1. All in all, we recover the same
character table using a completely different method.
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Method 3.
11. Compose the inclusion map ι : A4 → S4 with the group morphism π : S4 → S3 from the

previous exercise. Show that the image of πι is the subgroup {Id, (123), (132)} of S3,
isomorphic to Z3.

Solution. Let us consider all types of permutations from A4. In Exercise 3, we saw that
ι send 3-cycles to 3-cycles. Moreover, when acting on the tetrahedron, elements of cycle
type (2, 2), like (12)(34), reflect some edges around their midpoints, and exchange other
edges with their opposites. In any case, each midpoints segment remains in its place.
Thus ι((12)(34)) = Id.

This yields a surjective group morphism π′ : A4 → Z3, and hence an injective map
(π′)∗ : Irrep(Z3)→ Irrep(A4).

12. Recall all irreps of Z3, and describe their images by (π′)∗.

Solution. Identifying Z3 with {Id, (123), (132)}, its character table reads

#C 1 1 1

V
C [1] [(123)] [(132)]

V tr 1 1 1
V2 1 ω0 ω2

0
V3 1 ω2

0 ω0

By computations from the previous question, (π′)∗ sends the 3 irreps of Z3 to 3 irreps
of A4, whose characters are obtained by adding on the right a column of 1’s (corresponding
to the trivial action of (12)(34)).

13. Finish the character table.

Solution. One computes the character of the remaining degree 3 irrep using V reg, and
obtains precisely the same table as with the preceding methods.

We will now use the character table to study tensor products of irreps of A4.
14. Decompose into irreps Vi ⊗ Vj for all Vi, Vj ∈ Irrep(A4).

Solution. We do here only the most difficult case, V4 ⊗ V4. Its character is χV4⊗V4 =
χV4χV4 = (9, 0, 0, 1) (we give its values on the 4 conjugacy classes of A4, ordered as in our
tables). Then (χV4⊗V4 , χV

tr) = 1
12(1 · 9 · 1 + 3 · 1 · 1) = 1, and similarly (χV4⊗V4 , χV2) =

(χV4⊗V4 , χV3) = 1. Then, by a dimension argument, V4 ⊗ V4 ∼= V tr ⊕ V2 ⊕ V3 ⊕ 2V4. (One
could also compute directly: (χV4⊗V4 , χV4) = 1

12(1 · 9 · 3 + 3 · 1 · (−1)) = 2.)

Exercise 5. Show that for a map φ : G→ C, the following two conditions are equivalent:
• φ(hgh−1) = φ(g) for all g, h ∈ G;
• φ(ab) = φ(ba) for all a, b ∈ G.

Remark: This gives two alternative ways to define class functions.

Solution. In one direction, take g = ba, h = a. In the opposite direction, take a = h, b = gh−1.
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