Tutorial 2: Characters

Exercise 1. Recall that, given a surjective group morphism $\phi: G \to H$, there is a map

$$\phi^*$$
: Irrep $(H) \to$ Irrep (G) ,

 $\rho \mapsto \rho \phi$

preserving degrees (Tutorial 1). Using characters, prove that ϕ^* is injective.

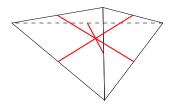
Exercise 2. Suppose that the character of a representation V of a finite group G vanishes on all $g \neq 1$. Show that V is then isomorphic to a direct sum $V^{reg} \oplus \cdots \oplus V^{reg}$ of several copies of the regular representation.

Exercise 3. (Character table for S_4)

- 1. List all conjugacy classes of S_4 . Compute their size.
- 2. How many irreducible representations does S_4 have?
- 3. Determine all 1-dimensional representations.
- 4. Find the dimensions of the remaining irreducible representations.
- 5. Recall the permutation representation $V^{perm} = \bigoplus_{i=1}^{4} \mathbb{C}e_i$, with $\sigma \cdot e_i = e_{\sigma(i)}$. Show that the vector $e_1 + e_2 + e_3 + e_4$ is a basis of a sub-representation L, isomorphic to V^{tr} .
- 6. Explain why L admits an S_4 -invariant complement. Denote it by (V^{st}, ρ_{st}) . It is the standard representation, which you saw in Lecture 2 for S_3 , and which you will encounter for all groups S_n in the homework.
- 7. Use $V^{perm} \cong V^{tr} \oplus V^{st}$ to compute the degree and the character of V^{st} .
- 8. Deduce that V^{st} is irreducible.
- 9. Consider the vector space V^{st} with a different S_4 -action: $\rho_{st,sgn}(\sigma) = sgn(\sigma)\rho_{st}(\sigma)$. Show that this defines an S_4 -representation. Denote it by $V^{st,sgn}$.
- 10. Using characters, check that $V^{st, sgn}$ is an irreducible representation, and $V^{st, sgn} \ncong V_{st}$.
- 11. Complete the character table by computing the character of the remaining irreducible representation, denoted by W. (Use the regular representation.)
- 12. Check that the scalar products (χ^W, χ^W) and $(\chi^W, \chi^{V^{st}})$ take the expected values.
- 13. Check also the orthogonality relations for some of the columns.

In the remainder of the exercise we will describe W explicitly.

- 14. Recall how to realise S_4 as the group of symmetries of the regular tetrahedron.
- 15. Verify that this S_4 -action permutes the three segments connecting the midpoints of the opposite edges:



- 16. Deduce from this a group morphism $\pi: S_4 \to S_3$.
- 17. For a 2-cycle / a 3-cycle σ of S_4 , compute $\pi(\sigma)$.
- 18. Conclude that π is surjective.
- 19. One then has the injective map π^* : Irrep $(S_3) \to$ Irrep (S_4) , $(V, \rho) \mapsto (V, \rho\pi)$ (Tutorial 1). Identify the image by π^* of the three irreducible representations of S_3 .

Remark: There are other ways to describe W. One can see S_4 as the symmetries of a cube (by looking at its actions on the four diagonals), and send it to S_3 by tracing its action on the three segments connecting the midpoints of the opposite faces. Alternatively, one can consider the action of S_4 on itself by conjugation, and observe that it permutes the three permutations of cycle type (2, 2).

Exercise 4. (Character table for A_4)

Recall that the *alternating group* A_4 is the group of all even permutations in S_4 .

- 1. List all conjugacy classes of A_4 . Compute their size.
- 2. Find the dimensions of all irreducible representations.

We will now construct the character table for A_4 using three different methods, each of them having a pedagogical interest.

Method 1.

3. Check the following relations in A_4 :

$$(123)^3 = \text{Id};$$

(123)(134) = (234);
(123)(124) = (24)(13).

- 4. Using them, determine all 1-dimensional representations of A_4 .
- 5. Using the regular representation, compute the character of the remaining irrep.

Method 2.

- 6. Consider the inclusion map $\iota: A_4 \to S_4$. Recall the associated map $\iota^*: \operatorname{Rep}(S_4) \to \operatorname{Rep}(A_4), (V, \rho) \mapsto (V, \rho\iota)$. For all irreps of S_4 , find the characters of their image by ι^* . What irreps of A_4 are obtained this way?
- 7. Show that $\iota^*(W)$ decomposes as $L_1 \oplus L_2$, where the sub-representations L_j have degree 1.
- 8. Using characters, prove that neither $L_1 \cong L_2$ nor $L_j \cong V^{tr}$ is possible.
- 9. Conclude that V^{tr} , L_1 , L_2 is the complete list of degree 1 irreps of A_4 .
- 10. Using $\iota^*(W) \cong L_1 \oplus L_2$ and basic properties of characters, finish the character table. Method 3.
- 11. Compose the inclusion map $\iota: A_4 \to S_4$ with the group morphism $\pi: S_4 \to S_3$ from the previous exercise. Show that the image of $\pi\iota$ is the subgroup {Id, (123), (132)} of S_3 , isomorphic to \mathbb{Z}_3 .

This yields a surjective group morphism $\pi' \colon A_4 \to \mathbb{Z}_3$, and hence an injective map

$$(\pi')^*$$
: Irrep $(\mathbb{Z}_3) \to$ Irrep (A_4) .

- 12. Recall all irreps of \mathbb{Z}_3 , and describe their images by $(\pi')^*$.
- 13. Finish the character table.

We will now use the character table to study tensor products of irreps of A_4 .

14. Decompose into irreps $V_i \otimes V_j$ for all $V_i, V_j \in \text{Irrep}(A_4)$.

Exercise 5. Show that for a map $\phi \colon G \to \mathbb{C}$, the following two conditions are equivalent:

- $\phi(hgh^{-1}) = \phi(g)$ for all $g, h \in G$;
- $\phi(ab) = \phi(ba)$ for all $a, b \in G$.

Remark: This gives two alternative ways to define class functions.