TCD - Hilary term 2017 MA3416: Group Representations

Tutorial 1: Basic notions of representation theory

Exercise 1. Let G and H be two groups, and ¢: G — H a map respecting the products:
that is, the relation ¢(gg") = ¢(g)¢d(g’) holds for all g,¢' € G. Show that ¢ then respects the
remaining components of the group structure:

L o(lg) = 1u;

2. forallge G, ¢(g7") =od(g)".

Solution. In ¢(gq9") = ¢(g)o(g’), choose
l.g=g=1c;
2. g =g

Exercise 2. Show that the two definitions of a representation given in Lecture 1 (one as a
group morphism G — Autc(V), and one as a linear action G x V' — V) are equivalent.

Solution. The equivalence is constructed as follows:
1. for a group morphism p: G — Autc(V), a linear action on V' can be defined by g - v =

p(g9)(v);

2. for a linear action - on V, the maps p(g): v — ¢ - v are linear automorphisms of V| and
satisfy p(g9’) = p(9)p(g')-

Exercise 3. Given a group G, consider the C-vector space CG with the basis e,4, g € G.
1. Check that the formula g - ey = ey, -1 defines a G-representation on CG. It is called the
right reqular representation of G.
2. Show that the map ¢(e;) = e,-1 defines an isomorphism between the left and the right
regular representations of G.

Solution.

L 9192 - ey = €g(giga)-t = Cogrgytgrt — 91 (g2 eq);  leg =eg1 =cey.

2. ¢ is a linear map since it is defined on a basis. It is bijective, since ¢¢ = Id. Finally, it is
G-linear: ¢(g' - eg) = ¢legy) = €(gg1 = €g-19-1 = g’ - d(ey). Here the first and the last
actions - should be understood in the sense of the left and the right regular representations
of G respectively.

Exercise 4. Consider a group morphism ¢: G — H.
1. Check that for any representation p: H — Autc(V) of H, the map p¢ yields a represen-
tation of G.
2. Show that this gives a monoid morphism

¢": Rep(H) — Rep(G),

P PP,
where the monoid structures are those described in Lecture 3.
3. Assuming ¢ surjective, show that ¢* restricts to a map Irrep(H) — Irrep(G).

Remark: This result can be used for constructing irreducible representations of a group out of

those of smaller ones. We will see it later for the symmetric groups Sy and Ss.

Solution.
1. p¢ is a group morphism since both p and ¢ are so.



2.

On the level of vector spaces, ¢* is the identity map. So is sends the zero representation
of H to the zero representation of G. Similarly, for (V;, p;) € Rep(H), ¢*(V1 @ Va, p1 & p2)
is the vector space Vi @ V; with the G-representation structure (p; @ p2)d = (p16) B (p20),
which is precisely ¢*(V1, p1) @ ¢*(Va, p2). (Reminder: the direct sum of linear maps is
defined by (¢ ® ¥)(v,w) = (¢(v),¥(w)). The map p; & pa: G — Aute(Vy) & Aute(Va)
sends g to py(g) @ pa(g).)

Take (V,p) € Irrep(H), and assume that (V, p¢) is reducible. It then has a G-invariant
subspace V' different from {0} and V itself. We will show that V' is also H-invariant,
which is a contradiction. Take h € H. Since ¢ is surjective, h = ¢(g) for some g € G.
But then p(h) = p(¢(g9)) = (po)(g), which restricts to V'’ because V' is G-invariant.

Exercise 5. Consider a finite field F,, a finite group G whose order is divisible by p, and the
left regular representation F,G of G over F,. Define a linear map ¢: F,G — F, by ¢(e;) = 1
for all g € G. Put I = Kere. The aim of the exercise is to show that I is a sub-representation
of F,G admitting no G-invariant complement.

1.
2.
3.

4.
D.

Check that [ is a sub-representation of F,G, which is proper (# F,G) and non-zero. What
is its dimension over [F,,?

Suppose that there is a decomposition F,G = I © V of G-representations. Take any
non-zero v € V, and put w = 3 s g - v. Show that w rewrites as Y- cq €(v)ey.

Deduce from thisw e INV.

Verify that w is non-zero.

Conclude.

Remark: This example shows that over fields of positive characteristic, the complete reducibility
for representations of finite groups we have established over C does not always hold.

Solution.

1.

I can be described as I = {3 cq ageglay € Fp, 3o cq ay = 0}. It is G-invariant since the
G-action does not change the sum of coefficients. It is proper since e; ¢ I (as e(e;) = 1),
and non-zero since 0 # e, —e; € I for all g # 1 (such g exist since #G is at least p, which
is > 2). Writing I as I = {3 jeq g1 Qg — (Zgecgr1 Ogleilay € Fpyg € G\ {1}}, one
gets dimp, I = #G — 1.

Alternatively, one can use Lemma 10 from Lecture 8.

Write v in the basis eg: v = > ,cqanen. Then w = 3 cq g v = Y canec Whegn =
YkeGheG ek = Ykec(Znecan)er = Yrege(v)er. We used the change of variables
g ~ k=gh.

w € V since w = Y,eqg v, v €V, and V is G-invariant. w € [ since e(w) =
e(Xgeqe(v)ey) = e(v)e(Xyeq ) = e(v)#G = 0. We used #G =0 in F,,.

. We should show that the coefficients of w in the basis e,, which are all equal to e(v), are

non-zero. Indeed, (v) = 0 would mean v € I. But v was chosen as a non-zero element
of V. This would contradict our assumption V' N1 = {0} (which is part of the statement
F,G=1aV).

Hence our assumption (there is a decomposition F,G = I @ V' of G-representations) was
wrong. Thus I is a proper non-zero sub-representation of F,G admitting no G-invariant
complement.



