
TCD – Hilary term 2017 MA3416: Group Representations

Tutorial 1: Basic notions of representation theory

Exercise 1. Let G and H be two groups, and φ : G → H a map respecting the products:
that is, the relation φ(gg′) = φ(g)φ(g′) holds for all g, g′ ∈ G. Show that φ then respects the
remaining components of the group structure:

1. φ(1G) = 1H ;
2. for all g ∈ G, φ(g−1) = φ(g)−1.

Solution. In φ(gg′) = φ(g)φ(g′), choose
1. g = g′ = 1G;
2. g′ = g−1.

Exercise 2. Show that the two definitions of a representation given in Lecture 1 (one as a
group morphism G→ AutC(V ), and one as a linear action G× V → V ) are equivalent.

Solution. The equivalence is constructed as follows:
1. for a group morphism ρ : G → AutC(V ), a linear action on V can be defined by g · v =
ρ(g)(v);

2. for a linear action · on V , the maps ρ(g) : v 7→ g · v are linear automorphisms of V , and
satisfy ρ(gg′) = ρ(g)ρ(g′).

Exercise 3. Given a group G, consider the C-vector space CG with the basis eg, g ∈ G.
1. Check that the formula g · eg′ = eg′g−1 defines a G-representation on CG. It is called the

right regular representation of G.
2. Show that the map φ(eg) = eg−1 defines an isomorphism between the left and the right

regular representations of G.

Solution.
1. g1g2 · eg′ = eg′(g1g2)−1 = eg′g−1

2 g−1
1

= g1 · (g2 · eg′); 1eg′ = eg′1 = eg′ .
2. φ is a linear map since it is defined on a basis. It is bijective, since φφ = Id. Finally, it is
G-linear: φ(g′ · eg) = φ(eg′g) = e(g′g)−1 = eg−1g′−1 = g′ · φ(eg). Here the first and the last
actions · should be understood in the sense of the left and the right regular representations
of G respectively.

Exercise 4. Consider a group morphism φ : G→ H.
1. Check that for any representation ρ : H → AutC(V ) of H, the map ρφ yields a represen-

tation of G.
2. Show that this gives a monoid morphism

φ∗ : Rep(H)→ Rep(G),
ρ 7→ ρφ,

where the monoid structures are those described in Lecture 3.
3. Assuming φ surjective, show that φ∗ restricts to a map Irrep(H)→ Irrep(G).

Remark: This result can be used for constructing irreducible representations of a group out of
those of smaller ones. We will see it later for the symmetric groups S4 and S3.

Solution.
1. ρφ is a group morphism since both ρ and φ are so.



2. On the level of vector spaces, φ∗ is the identity map. So is sends the zero representation
of H to the zero representation of G. Similarly, for (Vi, ρi) ∈ Rep(H), φ∗(V1⊕V2, ρ1⊕ρ2)
is the vector space V1⊕V2 with the G-representation structure (ρ1⊕ρ2)φ = (ρ1φ)⊕ (ρ2φ),
which is precisely φ∗(V1, ρ1) ⊕ φ∗(V2, ρ2). (Reminder: the direct sum of linear maps is
defined by (φ ⊕ ψ)(v, w) = (φ(v), ψ(w)). The map ρ1 ⊕ ρ2 : G → AutC(V1) ⊕ AutC(V2)
sends g to ρ1(g)⊕ ρ2(g).)

3. Take (V, ρ) ∈ Irrep(H), and assume that (V, ρφ) is reducible. It then has a G-invariant
subspace V ′ different from {0} and V itself. We will show that V ′ is also H-invariant,
which is a contradiction. Take h ∈ H. Since φ is surjective, h = φ(g) for some g ∈ G.
But then ρ(h) = ρ(φ(g)) = (ρφ)(g), which restricts to V ′ because V ′ is G-invariant.

Exercise 5. Consider a finite field Fp, a finite group G whose order is divisible by p, and the
left regular representation FpG of G over Fp. Define a linear map ε : FpG → Fp by ε(eg) = 1
for all g ∈ G. Put I = Ker ε. The aim of the exercise is to show that I is a sub-representation
of FpG admitting no G-invariant complement.

1. Check that I is a sub-representation of FpG, which is proper (6= FpG) and non-zero. What
is its dimension over Fp?

2. Suppose that there is a decomposition FpG = I ⊕ V of G-representations. Take any
non-zero v ∈ V , and put w = ∑

g∈G g · v. Show that w rewrites as ∑
g∈G ε(v)eg.

3. Deduce from this w ∈ I ∩ V .
4. Verify that w is non-zero.
5. Conclude.

Remark: This example shows that over fields of positive characteristic, the complete reducibility
for representations of finite groups we have established over C does not always hold.

Solution.
1. I can be described as I = {∑g∈G αgeg|αg ∈ Fp,

∑
g∈G αg = 0}. It is G-invariant since the

G-action does not change the sum of coefficients. It is proper since e1 /∈ I (as ε(e1) = 1),
and non-zero since 0 6= eg− e1 ∈ I for all g 6= 1 (such g exist since #G is at least p, which
is ≥ 2). Writing I as I = {∑g∈G,g 6=1 αgeg − (∑

g∈G,g 6=1 αg)e1|αg ∈ Fp, g ∈ G \ {1}}, one
gets dimFp I = #G− 1.
Alternatively, one can use Lemma 10 from Lecture 8.

2. Write v in the basis eg: v = ∑
h∈G αheh. Then w = ∑

g∈G g · v = ∑
g∈G,h∈G αhegh =∑

k∈G,h∈G αhek = ∑
k∈G(∑

h∈G αh)ek = ∑
k∈G ε(v)ek. We used the change of variables

g  k = gh.
3. w ∈ V since w = ∑

g∈G g · v, v ∈ V , and V is G-invariant. w ∈ I since ε(w) =
ε(∑

g∈G ε(v)eg) = ε(v)ε(∑
g∈G eg) = ε(v)#G = 0. We used #G = 0 in Fp.

4. We should show that the coefficients of w in the basis eg, which are all equal to ε(v), are
non-zero. Indeed, ε(v) = 0 would mean v ∈ I. But v was chosen as a non-zero element
of V . This would contradict our assumption V ∩ I = {0} (which is part of the statement
FpG = I ⊕ V ).

5. Hence our assumption (there is a decomposition FpG = I ⊕ V of G-representations) was
wrong. Thus I is a proper non-zero sub-representation of FpG admitting no G-invariant
complement.


