Tutorial 1: Basic notions of representation theory

Exercise 1. Let G and H be two groups, and $\phi: G \to H$ a map respecting the products: that is, the relation $\phi(gg') = \phi(g)\phi(g')$ holds for all $g, g' \in G$. Show that ϕ then respects the remaining components of the group structure:

1. $\phi(1_G) = 1_H;$

2. for all $q \in G$, $\phi(q^{-1}) = \phi(q)^{-1}$.

Solution. In $\phi(qq') = \phi(q)\phi(q')$, choose 1. $g = g' = 1_G;$ 2. $q' = q^{-1}$.

Exercise 2. Show that the two definitions of a representation given in Lecture 1 (one as a group morphism $G \to \operatorname{Aut}_{\mathbb{C}}(V)$, and one as a linear action $G \times V \to V$) are equivalent.

Solution. The equivalence is constructed as follows:

- 1. for a group morphism $\rho: G \to \operatorname{Aut}_{\mathbb{C}}(V)$, a linear action on V can be defined by $q \cdot v =$ $\rho(q)(v);$
- 2. for a linear action \cdot on V, the maps $\rho(q): v \mapsto q \cdot v$ are linear automorphisms of V, and satisfy $\rho(qq') = \rho(q)\rho(q')$.

Exercise 3. Given a group G, consider the \mathbb{C} -vector space $\mathbb{C}G$ with the basis $e_q, g \in G$.

- 1. Check that the formula $g \cdot e_{q'} = e_{q'q^{-1}}$ defines a G-representation on $\mathbb{C}G$. It is called the right regular representation of G.
- 2. Show that the map $\phi(e_g) = e_{q^{-1}}$ defines an isomorphism between the left and the right regular representations of G.

Solution.

- 1. $g_1g_2 \cdot e_{g'} = e_{g'(g_1g_2)^{-1}} = e_{g'g_2^{-1}g_1^{-1}} = g_1 \cdot (g_2 \cdot e_{g'});$ $1e_{g'} = e_{g'1} = e_{g'}.$ 2. ϕ is a linear map since it is defined on a basis. It is bijective, since $\phi\phi = \text{Id}$. Finally, it is G-linear: $\phi(g' \cdot e_q) = \phi(e_{q'q}) = e_{(q'q)^{-1}} = e_{q^{-1}q'^{-1}} = g' \cdot \phi(e_q)$. Here the first and the last actions \cdot should be understood in the sense of the left and the right regular representations of G respectively.

Exercise 4. Consider a group morphism $\phi: G \to H$.

- 1. Check that for any representation $\rho: H \to \operatorname{Aut}_{\mathbb{C}}(V)$ of H, the map $\rho\phi$ yields a representation of G.
- 2. Show that this gives a monoid morphism

$$\phi^* \colon \operatorname{Rep}(H) \to \operatorname{Rep}(G),$$

$$\rho \mapsto \rho \phi$$
,

where the monoid structures are those described in Lecture 3.

3. Assuming ϕ surjective, show that ϕ^* restricts to a map $\operatorname{Irrep}(H) \to \operatorname{Irrep}(G)$.

Remark: This result can be used for constructing irreducible representations of a group out of those of smaller ones. We will see it later for the symmetric groups S_4 and S_3 .

Solution.

1. $\rho\phi$ is a group morphism since both ρ and ϕ are so.

- 2. On the level of vector spaces, ϕ^* is the identity map. So is sends the zero representation of H to the zero representation of G. Similarly, for $(V_i, \rho_i) \in \operatorname{Rep}(H)$, $\phi^*(V_1 \oplus V_2, \rho_1 \oplus \rho_2)$ is the vector space $V_1 \oplus V_2$ with the G-representation structure $(\rho_1 \oplus \rho_2)\phi = (\rho_1\phi) \oplus (\rho_2\phi)$, which is precisely $\phi^*(V_1, \rho_1) \oplus \phi^*(V_2, \rho_2)$. (Reminder: the direct sum of linear maps is defined by $(\phi \oplus \psi)(v, w) = (\phi(v), \psi(w))$). The map $\rho_1 \oplus \rho_2 \colon G \to \operatorname{Aut}_{\mathbb{C}}(V_1) \oplus \operatorname{Aut}_{\mathbb{C}}(V_2)$ sends g to $\rho_1(g) \oplus \rho_2(g)$.)
- 3. Take $(V, \rho) \in \text{Irrep}(H)$, and assume that $(V, \rho\phi)$ is reducible. It then has a *G*-invariant subspace V' different from $\{0\}$ and V itself. We will show that V' is also H-invariant, which is a contradiction. Take $h \in H$. Since ϕ is surjective, $h = \phi(g)$ for some $g \in G$. But then $\rho(h) = \rho(\phi(g)) = (\rho\phi)(g)$, which restricts to V' because V' is G-invariant.

Exercise 5. Consider a finite field \mathbb{F}_p , a finite group G whose order is divisible by p, and the left regular representation \mathbb{F}_pG of G over \mathbb{F}_p . Define a linear map $\varepsilon \colon \mathbb{F}_pG \to \mathbb{F}_p$ by $\varepsilon(e_g) = 1$ for all $g \in G$. Put $I = \text{Ker } \varepsilon$. The aim of the exercise is to show that I is a sub-representation of \mathbb{F}_pG admitting no G-invariant complement.

- 1. Check that I is a sub-representation of $\mathbb{F}_p G$, which is proper $(\neq \mathbb{F}_p G)$ and non-zero. What is its dimension over \mathbb{F}_p ?
- 2. Suppose that there is a decomposition $\mathbb{F}_p G = I \oplus V$ of *G*-representations. Take any non-zero $v \in V$, and put $w = \sum_{g \in G} g \cdot v$. Show that *w* rewrites as $\sum_{g \in G} \varepsilon(v) e_g$.
- 3. Deduce from this $w \in I \cap V$.
- 4. Verify that w is non-zero.
- 5. Conclude.

Remark: This example shows that over fields of positive characteristic, the complete reducibility for representations of finite groups we have established over \mathbb{C} does not always hold.

Solution.

1. I can be described as $I = \{\sum_{g \in G} \alpha_g e_g | \alpha_g \in \mathbb{F}_p, \sum_{g \in G} \alpha_g = 0\}$. It is *G*-invariant since the *G*-action does not change the sum of coefficients. It is proper since $e_1 \notin I$ (as $\varepsilon(e_1) = 1$), and non-zero since $0 \neq e_g - e_1 \in I$ for all $g \neq 1$ (such *g* exist since #G is at least *p*, which is ≥ 2). Writing *I* as $I = \{\sum_{g \in G, g \neq 1} \alpha_g e_g - (\sum_{g \in G, g \neq 1} \alpha_g) e_1 | \alpha_g \in \mathbb{F}_p, g \in G \setminus \{1\}\}$, one gets $\dim_{\mathbb{F}_p} I = \#G - 1$.

Alternatively, one can use Lemma 10 from Lecture 8.

- 2. Write v in the basis e_g : $v = \sum_{h \in G} \alpha_h e_h$. Then $w = \sum_{g \in G} g \cdot v = \sum_{g \in G, h \in G} \alpha_h e_{gh} = \sum_{k \in G, h \in G} \alpha_h e_k = \sum_{k \in G} (\sum_{h \in G} \alpha_h) e_k = \sum_{k \in G} \varepsilon(v) e_k$. We used the change of variables $g \rightsquigarrow k = gh$.
- 3. $w \in V$ since $w = \sum_{g \in G} g \cdot v$, $v \in V$, and V is G-invariant. $w \in I$ since $\varepsilon(w) = \varepsilon(\sum_{g \in G} \varepsilon(v)e_g) = \varepsilon(v)\varepsilon(\sum_{g \in G} e_g) = \varepsilon(v)\#G = 0$. We used #G = 0 in \mathbb{F}_p .
- 4. We should show that the coefficients of w in the basis e_g , which are all equal to $\varepsilon(v)$, are non-zero. Indeed, $\varepsilon(v) = 0$ would mean $v \in I$. But v was chosen as a non-zero element of V. This would contradict our assumption $V \cap I = \{0\}$ (which is part of the statement $\mathbb{F}_p G = I \oplus V$).
- 5. Hence our assumption (there is a decomposition $\mathbb{F}_p G = I \oplus V$ of *G*-representations) was wrong. Thus *I* is a proper non-zero sub-representation of $\mathbb{F}_p G$ admitting no *G*-invariant complement.