
GROUP THEORY AND THE RUBIK’S CUBE

HANNAH PROVENZA

Abstract. Here we present a basic introduction to the theory of groups and

permutations. Then we will define the group generated by operations on the

Rubik’s cube, the classic toy invented in 1974 by Hungarian sculptor and
architect Erno Rubik that caused a sensation in the 1980s, quickly becoming

one of the world’s best-selling toys. Finally, we will find the order of the group

and explore current research to find its diameter.
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1. Groups

Definition 1.1. A group G is a set of points with an operation, ∗, that relates
every pair of elements x and y such that the following properties are satisfied:

(1) Closure: ∀x, y ∈ G, x∗y = z =⇒ z ∈ G.
(2) Associativity: ∀x, y, z,∈ G, we have x∗(y∗z) = (x∗y)∗z.
(3) Identity: ∃ an element 1 ∈ G such that ∀x ∈ G, x∗1 = 1∗x = x.
(4) Inverse: ∀ x ∈ G, ∃x−1 such that x∗x−1 = 1.

Example 1.2. The integers form a group, Z, under addition, in which the identity
is 0 and the inverse of each z is −z. This group also has the property of commu-
tativity, meaning that ∀x, y ∈ G, x + y = y + x. Groups with commutativity are
also known as Abelian groups. Another example of an Abelian group is the set
R\0 under multiplication. In this case, 0 is excluded because there is no element
in the reals that is its inverse.

Definition 1.3. The center of a group G, denoted Z (G), is the set of elements
that commute with every other element of G. Another way of expressing this is
Z (G) = {z ∈ G|zg = gz∀g ∈ G}. A group is Abelian iff Z (G) = G, and a group is
centerless iff Z (G) = I.
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2. Permutation

Definition 2.1. A permutation is an invertible mapping of a finite set N onto
itself. A cycle is a subset of a permutation in which the affected elements, E, can
be ordered, and every element of E is sent to another element of E. For example,
(1 3 4 2) is the cycle whose permutation induces 1 → 3 → 4 → 2 → 1. In this
example, E has four elements; accordingly, it is known as a 4-cycle.

Theorem 2.2. Every permutation P of degree n is a product of uniquely defined
disjoint cycles.

Proof. By induction.
The permutation P maps the symbol 1 into p1, the symbol p1 into pp1 , the symbol

pp1 into ppp1
etc. and finally pp...1

into 1; hence P =

1 p1 pp1 · · · pp...1

Q where

Q is a permutation of degree N which does not affect the symbols affected by the

uniquely defined cycle

1 p1 pp1 · · · pp...1

, with Q of degree n − 1 if p1 = 1.

We assume the theorem to be correct for all permutations of degree < n; thus it is
correct also for the permutation P of degree n. �

Definition 2.3. A cycle of length two is known as a transposition.

Theorem 2.4. Every permutation P is a product of transpositions.

Proof. This follows from Theorem 2.2 when we show that it is true for cycles:

(2.5) (1 2 . . . m− 1 m) = (1 m) (1 m− 1) . . . (1 3) (1 2)

This proof also demonstrates that an n-cycle can be decomposed into n−1 transpo-
sitions. We should note, however, that these transpositions need not be disjoint. �

Definition 2.6. We say that a permutation is even or odd if it can be written as
the product of an even or odd number, respectively, of transpositions. The evenness
or oddness of a permutation is known as its alternating character; we express
the alternating character of P as η (P ) = 1 if P is even and η (P ) = −1 if P is odd.

Theorem 2.7. All permutations are either even or odd.

Proof. Let P be a given permutation. By theorems 2.1 and 2.3, we know that
P = t1t2t3 . . . ts, where t1, t2, etc. are transpositions. This decomposition is not
unique; because (a b) (a b) = I, an arbitrary number of products of two equal
transpositions can be added to a product of transpositions without changing the
value of the product. Furthermore, any transposition (a b) = (c a) (c b) (c a) when
c is any object distinct from a and b. Still, the evenness or oddness of P is equal
to (−1)s. �

Remark 2.8. It is also clearly a fact that the product of two even or two odd
permutations is even, and the product of an odd and an even permutation is odd.
Furthermore, (a b) (a b) = 1 so the identity permutation is even as well.
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3. Constructing the Cube Group

The original Rubik’s cube can be described as 26 cubies arranged around a core,
which holds the other pieces in place, in the shape of a 3 · 3 · 3 cube. Each face of
the cube is a different color by turning the sides the colored pieces can be mixed
up; the goal of the game is to return the pieces to their original configuration. The
26 cubies can be classified as the six center pieces, which have one facelet each, the
twelve edge pieces, with two stickers each, and the eight corner pieces, with three
stickers each.

Definition 3.1. We will define the sides of the cube as Right, Left, Up, Down,
Front, and Back. A move X is a ninety-degree clockwise turn of that face. Moves
for each face will be denoted as R, L, U, D, F, and B, respectively (we use Up and
Down instead of Top and Bottom to avoid the potential confusion between Bottom
and Back).

Figure 1. The facelets of the Rubik’s cube, numbered in agree-
ment with the set of permutations. If one imagines this diagram
folded into the shape of a cube, one can see how each cubie has two
or three facelets. For example, the cubie where the Up, Front, and
Left faces meet has facelets 7, 41, and 13. Because corner facelets
are on the same cubie, they are fixed relative to one another. For
example, going clockwise and looking directly at the corner piece,
we will never see the facelets in the order 7, 13, 41.

Remark 3.2. Because of the way that the cube rotates, the centers always stay
in the same position relative to each other, so we will not consider them. By
extension, we will ignore the middle slice turns. For our purposes, a middle slice
turn is equivalent to the move XY −1 where X and Y are the faces parallel to the
middle slice.
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With Figure 1, we can explicitly define the effect of each move on the cube. Each
of these moves is equivalent to a 4-cycle on the corner cubies of the face in question
and a 4-cycle on the edge cubies of the face; considering the moves as two 4-cycles
will allow us to look at the possible permutations of cubies without considering
orientation later.

(3.3) L = (1 41 29 33) (7 47 27 39) (8 48 28 40) (13 15 9 11) (12 10 14 16)

(3.4) R = (5 37 25 45) (3 35 31 43) (4 36 32 44) (17 19 21 23) (24 18 20 22)

(3.5) F = (7 23 31 15) (5 21 29 13) (6 22 30 14) (41 43 45 47) (42 44 46 48)

(3.6) B = (1 9 25 17) (11 27 19 3) (2 10 26 18) (39 33 35 37) (38 40 34 36)

(3.7) U = (1 3 5 7) (2 4 6 8) (39 17 43 13) (37 23 41 11) (12 38 24 42)

(3.8) D = (19 33 15 45) (21 35 9 47) (20 34 16 46) (25 27 29 31) (26 28 30 32)

Theorem 3.9. The set of operations on the cube that can be reached from the
solved state by making the moves listed above in various combinations is a group
under the operation of concatenation. We will then refer to this group as the cube
group.

Proof. (1) First we will show that the group has associativity, or that

(3.10) (XY )Z = X(Y Z).

(XY )Z means to do move XY , then move Z, while X(Y Z) means to do
move X, then move Y Z. Both of these are equivalent to making move X,
followed by Y , followed by Z.

(2) The identity element, I, is making no move at all. Since this leaves the cube
unchanged, we obviously have IX = X = XI

(3) The inverse, X−1, of any single face turn is X3, which is equivalent to the
face turn X performed counterclockwise instead of clockwise. The inverse
of a sequence of moves XY is Y −1X−1. Intuitively, this is clear: the way to
undo any sequence of moves is to undo each move in turn, starting with the
last move and working back to the first. This can easily be proven by multi-
plying the two together: (XY )(Y −1X−1) = X(Y Y −1)X−1 = X(I)X−1 =
XX−1 = I.

�

The cube group is clearly not Abelian: A sequence of two turns acting upon the
solved cube, like RU , produces a cube that looks very different from that produced
by the sequence UR.

4. Order of the Cube Group

Given what we now know about permutations and the face turns on and struc-
ture of the Rubik’s cube, we can use combinatorics to calculate the order of the
construction group C, or the total number of possible permutations of the cubies.

First, we will solve for the number of possible arrangements of cubies, as if we
had taken the cube apart and reconstructed it with the pieces in different places.
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The twelve edge pieces may be permuted in 12! ways with 212 unique orienta-
tions. Similarly, the eight corner pieces can be permuted in 8! ways with 38 unique
orientations. Thus, there are

(4.1) 12! · 212 · 8! · 38 = 519, 024, 039, 293, 878, 272, 000

possible arrangements of the cubies.
However, not all of these can be reached by our allowed face turns. For example,

it is a well known fact among cubers that it is impossible to switch two and only two
pieces. This is because each move is the composition of a 4-cycle on the corners
and a 4-cycle on the edges. Then each face turn is an even permutation of the
cubies. We already showed that the product of two even permutations is even; so
only even permutations are possible by means of our allowed face turns. Another
way to make the cube unsolvable is to twist a single corner piece or flip a single
edge, changing the cube’s parity.

For how many of the total permutations do the odd permutations and the per-
mutations with incorrect parity account?

Theorem 4.2. Exactly half of the permutations in the cube group are even.

Proof. Let P be an even permutation. Since PP−1 = I and I is even, P−1 is also
even. An even permutation times an even permutation, so the even permutations
form a subgroup of the group of permutations. Now suppose P is odd and Q is
even; then PQ is odd. Define R = PQ where R is odd. Now we left-multiply by
P−1 so that Q = P−1R, and the map Q 7−→ PQ is one-to-one and onto from even
to odd permutations. Therefore, either half are even and half are odd, or all are
one or the other. In the case of our group, we have examples of both, so half of the
total permutations of cubies are even. �

Theorem 4.3. If one takes out a single corner piece and twists it by ± 2kπ
3 radians,

the cube will be impossible to solve. More explicitly: For any permutation of the
cube, add up the clockwise radians each corner cubie has turned from the cubie that
was originally there. This sum is an angle of the form 2kπ

3 where k is 0, 1, or 2
mod 3. We will now show that for any permutation of the cube, k = 0.

Proof. Define a map T : C → (Z/3Z)+ defined as T (P ) = 3
2π

∑8
i=1 Θi = kmod3

where θj represents the change in angle of the jth corner cubie from the previous
corner cubie in that position and P is any element of the group C Now suppose P
and Q are elements of C. Then T (PQ) = 3

2π

∑8
i=1 ΘPQi = 3

2π

∑8
i=1 (ΘPi + ΘQi) =

3
2π

∑8
i=1 ΘPi + 3

2π

∑8
i=1 ΘQi = T (P ) + T (Q), so T is a homomorphism. By obser-

vation, each of the face turns keeps k = 0. Therefore any composition of face turns,
and thus any permutation from the solved state, will also have k = 0. �

A similar proof holds for a flip of the edge pieces when the rotation is of the form
mπ and m is 0 or 1 mod 2.

Thus, it is impossible to flip a single edge piece, twist a single corner, or switch
exactly two pieces. Therefore, half of the permutations will be invalid, as will be
half of the edge orientations and two-thirds of the corner orientations. Thus, we
have

(4.4)
12! · 212 · 8! · 38

3 · 2 · 2
= 43, 252, 003, 274, 489, 856, 000

permutations in the cube group.
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5. Diameter of the Cube Group

Currently, it is not known how to find the minimum distance between two per-
mutations of the cube. Current research on the cube group is largely concerned
with finding the diameter of the group, or the length of the worst-case shortest
solution. The minimum number of turns necessary to solve this worst-case shuffle
is known as God’s number.

There are two commonly used metrics for counting the number of turns in a
given solution. In the quarter-turn metric, each quarter turn counts as a separate
move. The face-turn metric is similar except that half turns are also counted as
one turn, rather than as two quarter turns. For example, F 2 is counted as one turn
in the face-turn metric and two turns in the quarter-turn metric. Solution lengths
typically specify which metric is being used by including a q for quarter or an f for
face immediately after the number.

A lower bound on God’s number can be found with the use of a simple pigeonhole
argument that the number of possible positions after n turns must be greater than
or equal to the number of permutations of the cube. When the cube is in the initial
(solved) state, twelve quarter-turns are possible: one for each of the six faces and
their inverses. After that, there are eleven moves that can potentially create a new
permutation (twelve, as before, less the inverse of the previous move). Then we
have:

(5.1) 12 · 11n−1 ≥ 43, 252, 003, 274, 489, 856, 000

where n is an integer. Thus n ≥ 19 turns in the quarter-turn metric.
The current lower bound, however, is much higher than this. The position known

as ”superflip,” in which all the cubies are permuted correctly with every corner
piece oriented correctly and every edge piece oriented incorrectly, was expected for
years to require a particularly long minimal solution because of its high degree
of symmetry. Furthermore, superflip is unique in that it is the only permutation
other than the identity that is in the center of the cube group. In 1995, a 24q
solution for superflip was found by University of Central Florida professor Michael
Reid, and later proven to be a minimal solution for superflip by Jerry Bryan.
Permutations have been found since then that are longer than superflip in the
quarter-turn metric. However, superflip has been proven to have a minimal length
of 20f, and no positions are currently known that take more than 20 face turns. It’s
quite possible that superflip’s 20f solution is the longest minimal solution for any
permutation, and that 20 is God’s number in the face turn metric.

However, because of the sheer enormity of the group, proving upper bounds
requires an incredible amount of computational power. A new upper bound on
God’s number, 25f, was published in spring 2008 by Tomas Rokicki. Rokicki’s
proof makes use of billions cosets to reduce the number of calculations necessary, yet
Rokicki still lacked the processing power to make further progress. John Welborn,
a representative of Sony Pictures Imageworks, read about Rokicki’s proof and was
interested enough to offer him downtime on the powerful renderfarm used to create
the digital effects used in Sony’s films. By June 2008, having used over 55 years
of processor time, they had pushed the upper bound down to 24f, then 23f, then
22f. A proof that twenty moves suffice will likely require hundreds of times as much
computation as the proof for twenty-two; currently, the limiting factor is only the
computational resources available.
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