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Abstract Let D be any elliptic right cylinder. We prove that every type of knot can be
realized as the trajectory of a ball in D. This proves a conjecture of Lamm and gives a new
proof of a conjecture of Jones and Przytycki. We use Jacobi’s proof of Poncelet’s theorem
by means of elliptic functions.
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1 Introduction

Jones and Przytycki defined billiard knots as periodic billiard trajectories without self-
intersections in a three-dimensional billiard. They proved that billiard knots in a cube are
very special knots, the Lissajous knots. They also conjectured that every knot is a billiard
knot in some convex polyhedron ([12], see also [4–6,16,22,25]).

Lamm [15,18] proved that not all knots are billiard knots in a cylinder. Then he conjec-
tured that every non-circular elliptic cylinder contains all knots as billiard knots. It is easy to
see that Lamm’s conjecture implies the conjecture of Jones and Przytycki: if K is a billiard
knot in a convex set, then it is also a billiard knot in the polyhedron delimited by the tangent
planes. Dehornoy constructed in [8] a billiard which contains all knots, but this billiard is not
convex.
In this paper, we obtain a proof of Lamm’s conjecture and extend it to links.

Theorem 17 Let E be an ellipse which is not a circle, and let D be the elliptic cylinder
D = E × [0, 1]. Every knot (or link) is a billiard knot (or link) in D.

Let us give an outline of our proof strategy.
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In Sect. 2 we recall some classical facts about elliptic billiards. If the initial segment of
a billiard path in the ellipse E avoids the focal segment of E , then there exists an ellipse C
called a caustic, such that the path is circumscribed about C .

We prove that if n ≥ 2k + 1, then there exist n-periodic trajectories winding k times
around the caustic. Then, using a theorem on toric braids due to Lamm and Manturov, we
deduce that every knot has a planar projection which is a billiard path in an ellipse.

Section 3 presents an explicit proof of the Poncelet porism. This beautiful theorem says
that if there is a closed polygon inscribed in a conic E and circumscribed about another
conic, then there exist infinitely such polygons, one with a vertex at any given point of E . We
recall the Hermite–Laurent proof of Poncelet’s theorem by means of Jacobian elliptic func-
tions. The advantage of this proof is that it provides explicit computations of these Poncelet
polygons.

Section 4 presents the key step of our strategy. We compute the coordinates of the cross-
ings in terms of Jacobian elliptic functions. Then, some basic holomorphic and arithmetic
properties of these functions are used to prove that if n is odd, then there exists a Poncelet
polygon of n sides and winding number k, which is totally irregular.

This has the following meaning. Let us suppose that we start at some initial vertex of
the polygon and trace out the polygon using arc length. We produce a sequence of distances
t1, t2 . . . between the initial point and each successive crossing point. Then the numbers
1, t1, t2, . . . are linearly independent over Q.

Section 5 concludes the proof by using the famous density theorem of Kronecker.

If 1, t1, . . . , tk are linearly independent over Q, then the set of points
(
(mt1), . . . , (mtk)

)

is dense in the unit cube, when m varies over N. Here (x) denotes the fractional part of x.
Now, let D = E × [0, 1]. Let K be the desired knot. Let us start with a copy of K whose

planar projection is a totally irregular polygon P . There is a family of periodic billiard paths
Pm which all project to P . One keeps the horizontal component the same and varies the
slope m. Using Kronecker’s theorem, and adjusting the slope, one can find m such that at
the preimages of the crossings, the heights of Pm are arbitrarily close to some specified list.
In particular, one can obtain the over-and-under crossings of Pm to match those of K . It is
remarkable that Pm may bounce up and down a huge number of times, but this number is
invisible to the proof.

There are other applications of Kronecker’s theorem to the construction of knots in [13,14].

2 Billiard trajectories in an ellipse

The study of billiard trajectories in an ellipse was introduced by Birkhoff in 1927 [2].

2.1 Some elementary facts

The following results are classical, see [1,9,20,23,27,28] (Fig. 1).

Theorem 1 Suppose that some segment of a billiard trajectory in an ellipse does not inter-
sect the focal segment [F1 F2]. Then the billiard trajectory remains forever tangent to a fixed
confocal ellipse called the caustic.

Remark 2 When some segment contains one focus, then every segment contains a focus,
and there is no caustic. When some segment intersects the interior of the focal segment then
there is a caustic, which is a hyperbola with foci F1 and F2.
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Fig. 1 Existence of an elliptic
caustic

Corollary 3 Let P0, P1, . . . , Pn−1, Pn = P0 be a billiard trajectory in an ellipse E such
that P0 P1 does not intersect the focal segment [F1 F2]. Then it is a periodic billiard trajectory
inscribed in E and circumscribed about a confocal ellipse C.

Now, we shall prove the existence of billiard polygons with n sides and rotation number p.
Following an idea due to Chasles , Birkhoff [1,2], obtains them as polygons of maximum
perimeter among the n-polygons of winding number p inscribed in E . The following simpler
result is sufficient for our purposes.

Proposition 4 Let P0 be a point of an ellipse E. Let n and p be coprime integers such that
n ≥ 2p + 1. There exists a billiard trajectory in E, of period n, of winding number p and
starting at P0.

Proof Let our ellipse E be defined by its foci F1 and F2 and by its major axis 2a. Let us
consider the 1-parameter family of caustics defined by Cδ = {M, M F1 + M F2 = 2δ}. As it
is easy to see, they shrink down to the focal segment [F1 F2] when 2δ = F1 F2, and expand to
the ellipse E if δ = a. When Cδ is the focal segment, the Poncelet trajectory P0, P1, . . . , Pn

passes alternately through one focus and then the other. Consequently the winding number
ω of this trajectory is greater than n/2 .

When δ varies from F1 F2/2 to a, the winding number varies continuously from ω to
0. Hence the desired (integral) winding number is achieved. By Corollary 3, this Poncelet
polygon is a periodic trajectory. Finally, since p and n are coprime its exact period is n,
which concludes the proof. ��
Remark 5 This does not prove that the caustics Cn,p do not depend on the initial point P0.
This is true by Poncelet’s theorem, which we shall prove later.

2.2 Poncelet polygons and toric braids

A toric braid is a braid corresponding to the closed braid obtained by projecting the stan-
dardly embedded torus knot into the xy-plane. A toric braid is a braid of the form τp,n =(
σ1 σ2 . . . σp−1

)n
, where σ1, . . . , σp−1 are the standard generators of the full braid group

Bp (Fig. 2).

Remark 6 Let E and C be nested ellipses such that there exists a Poncelet polygon inscribed
in E and circumscribed about C . Every Poncelet polygon is the projection of a torus knot of
type T (n, p), n ≥ 2p + 1. More precisely, if we cut the elliptic annulus delimited by E and
C along a half-tangent, then we see that such a polygon is ambient isotopic to the projection
of the closure of the toric braid τp,n . Consequently, it is also ambient isotopic to the star
polygon

{n
p

}
, see [14].
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Fig. 2 Some Poncelet polygons (or unions of Poncelet polygons) in nested ellipses. They are projections of
the toric braids τ3,10, τ2,10 and τ3,9, and are denoted

{10
3
}
,
{10

2
}

and
{9

3
}

We shall need the following results on braids, due to Lamm, and independently to Mantu-
rov [15,17,21]. A quasitoric braid (or rosette braid) of type B(p, n) is a braid obtained by
changing some crossings in the toric braid τp,n .

The Lamm–Manturov theorem tells us that every knot (or link) is realized as the closure
of a quasitoric braid. More precisely, every μ-component link can be realized as the closure
of a quasitoric braid of type B(pμ, nμ) where (p, n) = 1, p even and n odd.

The quasitoric braids form a subgroup of the full braid group, hence there exist trivial
quasitoric braids of arbitrarily great length. Consequently, we can suppose n ≥ 2p + 1 in
the Lamm–Manturov theorem. Using this theorem, Proposition 4, and Poncelet’s closure
theorem, we obtain the main result of this section.

Theorem 7 Let E be an ellipse. Everyμ-component link has a projection which is the union
of μ billiard trajectories in E with the same odd period, and with the same caustic C.

3 Jacobi’s proof of Poncelet’s theorem

Shortly after the publication of Poncelet’s book, Jacobi gave a proof of Poncelet theorem by
means of Jacobian elliptic functions [11,24]. We will present the Hermite–Laurent version
of Jacobi’s proof, apparently forgotten by the experts [19].

The following properties of elliptic functions will be sufficient for our purposes, see [29]
for proofs.

3.1 The Jacobian elliptic functions sn z, cn z and dn z

They depend on the choice of a parameter k, 0 < k < 1, called the elliptic modulus.
The Jacobi amplitude ϕ = am(z) is defined by inverting the elliptic integral

z =
ϕ∫

0

dt√
1 − k2 sin2 t

.

It verifies am(u + 2nK ) = am(u)+ nπ, where am(K ) = π
2 , and n ∈ Z.

The Jacobian elliptic functions are defined for z real by

sn z = sin
(
am(z)

)
, cn z = cos

(
am(z)

)
, dn z =

√
1 − k2sn2z,

and can be extended to meromorphic functions on C. When k = 0, these functions degener-
ate into the ordinary circular function sin z and cos z. But, contrarily to the circular functions,
they are doubly periodic functions with periods 4K ∈ R, and 4i K ′ ∈ iR, and they have
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Fig. 3 Jacobi’s Lemma

poles. For example, the poles of sn z are congruent to i K ′ (mod.2K , 2i K ′), its zeros are
the points congruent to 0 (mod.2K , 2i K ′), and its exact periods are 4K , 2i K ′. The zeros
of cn z are the points congruent to K (mod.2K , 2i K ′). We have sn(z + 2K ) = −sn z, and
cn(z + 2K ) = −cn z. We also have sn(K + i K ′) = k−1, which implies that the zeros of
dn z are the points congruent to K + i K ′ (mod.2K , 2i K ′).

We have the following addition formulas

sn(x + y) = sn x cn y dn y + sn y cn x dn x

1 − k2 sn2 x sn2 y
, cn(x + y) = cn x cn y − sn x sn y dn x dn y

1 − k2 sn2x sn2 y

When k = 0, these formulas degenerate into the usual addition formulas for the circular
functions.

In the next section we will use the following formula due to Jacobi [29, p.529].

sin
(
am(u + v)+ am(u − v)

) = 2 sn u cn u dn v

1 − k2 sn2u sn2v

3.2 Jacobi’s uniformisation

The next result is a variant of Jacobi’s uniformization of the Poncelet problem. It is due to
Hermite and Laurent [19] (Fig. 3).

Lemma 8 Let E and C be the ellipses defined by

E =
{ x2

a2 + y2

b2 = 1
}
, a > b > 1, C =

{
x2 + y2 = 1

}
.

Let us parameterize E by P(ψ) = (a cnψ, b snψ), and C by M(ϕ) = (cn ϕ, sn ϕ), where
the elliptic modulus k is defined by k2(a2 − 1) = (a2 − b2). Let β be a real number such
that cn β = 1/a.

Then the tangent to C at M(ϕ) intersects E at P(ϕ − β) and P(ϕ + β).

Proof We have dn2β = 1 − k2 sn2β = b2/a2, hence dn β = b/a.
Let us show that P(ϕ + β) belongs to the tangent to C at M(ϕ). The equation of this

tangent is x cn ϕ + y sn ϕ = 1. Let us compute S = a cn(ϕ + β) cn ϕ + b sn(ϕ + β) sn ϕ.
Using the addition formulas we obtain

S (1 − k2 sn2ϕ sn2β) = cn2ϕ + sn2ϕ dn2β = cn2ϕ + sn2ϕ (1 − k2 sn2β)

= 1 − k2 sn2ϕ sn2β.

Consequently, S = 1, and P(ϕ + β) belongs to the tangent to C at M(ϕ). Changing β to
−β, we see that P(ϕ − β) also belongs to this tangent. ��
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Fig. 4 Proof of Poncelet’s
closure theorem

Remark 9 By affinity, Jacobi’s lemma extends easily in the case of two nested ellipses with the
same two axis, meeting transversally in P2(C). When this pair of ellipses becomes affinely
equivalent to a pair of concentric circles, the elliptic parametrizations degenerate into the
usual circular ones.

3.3 Proof of Poncelet’s closure theorem

We shall now present the Hermite–Laurent proof of Poncelet’s theorem for a pair of confocal
ellipses. Since any pair of conics meeting transversally in P2(C) is projectively equivalent to
a pair of confocal ellipses [20], we obtain a proof of the generic case of Poncelet’s theorem.
For the nongeneric cases see [1,9,26], and for the original proof of Jacobi see [3] (Fig. 4).

Proof of Poncelet’s closure theorem. Let P0, P1, . . . Pn−1 P0 be a Poncelet polygon inscribed
in E and circumscribed about C . Let Pj Pj+1 be tangent to C at M j . We will use the Jacobi
parametrizations of E and C . If M0 = M(ϕ), then by Jacobi’s lemma we can suppose
P1 = P(ϕ + β). Using Jacobi’s lemma again, we have M1 = M(ϕ + 2β), and by induction
M j = M(ϕ + 2 jβ).

Since the polygon closes after n steps, we have Mn = M0, or M(ϕ + 2nβ) = M(ϕ).
That means am(ϕ+2nβ) = am ϕ+2qπ = am(ϕ+4q K ) by the properties of the Jacobi

amplitude. Consequently we obtain 2nβ = 4q K , or β = 2q K/n.
Now, let us consider a Poncelet polygon starting from an arbitrary point M ′

0 = M(ϕ′)
of C . By Jacobi’s lemma we have M ′

n = M(ϕ′ + 2nβ) = M(ϕ′ + 4q K ) = M(ϕ′) = M ′
0.

Consequently, we see that every Poncelet polygonal line closes after n steps. �

Remark 10 Darboux has shown that if P is a Poncelet polygon with an even number of sides
in two confocal ellipses, then P possesses a central symmetry. This result shows that a totally
irregular Poncelet polygon has necessarily an odd number of sides, see [7,23].

4 Irregularity of Poncelet odd polygons

Most regularity properties of a polygon can be expressed by rational linear relations between
some of its segments. Let us parameterize a (crossed) polygon by arc length, starting at a
vertex P0. We shall say that this polygon is totally irregular if 1 and the arc lengths of its
crossings and vertices (except P0) are linearly independent over Q.

The purpose of this section is to prove that if E and C is a pair of confocal ellipses pos-
sessing a Poncelet polygon with an odd number of sides, then there exists a totally irregular
Poncelet polygon. We will give an analogous result for unions of finitely many Poncelet
polygons.
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4.1 Two lemmas on elliptic functions

We shall use elliptic functions to compute the arc lengths of the crossings and vertices of
Poncelet polygons. We shall need the following two technical lemmas.

Lemma 11 Let n and p be coprime integers, with n odd. For every integer j, let us define the
function f j (z) = sn2(z + jθ)+ r2, where r2 > 0 and θ = 4pK/n. Then, if h �≡ j (mod n),
the functions f j (z) and fh(z) do not possess any common zero.

Proof First, let us study the zeros of the elliptic function g(z) = sn z + ir, r > 0. By
considering its restriction to the y-axis, we see that there exists a pure imaginary α, such
that g(α) = 0. Since we have sn(2K − α) = sn α, we see that 2K − α is another zero of
g(z). As g(z) is an elliptic function of order two, its zeros are the points congruent to α or
2K −α (mod. 4K , 2i K ′). By parity, we deduce that the zeros of f j (z) are the numbers which
are congruent to ±α − jθ, or 2K ± α − jθ, (mod. 4K , 2i K ′).

If we had α − jθ ≡ α − hθ, or α − jθ ≡ 2K + α − hθ (mod.4K , 2i K ′), then we
would deduce (h − j)θ ≡ 0 (mod 2K ). This implies that 2(h − j)p/n is an integer, which
is impossible since n is odd, (n, p) = 1, and h �≡ j (mod n).

If we had α − jθ ≡ −α − hθ or α − jθ ≡ 2K − α − hθ, (mod.4K , 2i K ′), then
we would have 2α ≡ (( j − h)θ (mod. 2K , 2i K ′). Taking the real parts, we would obtain
( j − h)θ ≡ 0 (mod 2K ) which is impossible.

Consequently, α − jθ cannot be a zero of fh(z). The proof that the other zeros of f j (z)
cannot be zeros of fh(z) is entirely similar. ��
Remark 12 As the proof shows it, the condition n odd is necessary in Lemma 11.

Lemma 13 Let n and p be coprime integers. For j �≡ 0 (mod n), let us define the functions
D j (z) and Fj (z) by

D j (z)=sn(z + jθ) cn z − cn(z + jθ) sn z, Fj (z)= sn(z + jθ)− sn z

D j (z)
, whereθ = 4pK

n
.

Then, for every integer j there exists a complex number α j such that Fj (α j ) = ∞, and
Fh(α j ) �= ∞. for h �≡ j (mod n).

Proof We have

D j (z) = sin
(
am(z + jθ)− am z

) = sin
(
am(z + jθ)+ am(−z)

)

Now, using the Jacobi formula for sin
(
am(u + v)+ am(u − v)

)
, we obtain

D j (z) = 2 sn( jβ) cn( jβ) dn(z + jβ)

1 − k2 sn2( jβ) sn2(z + jβ)
, where β = θ

2

Letα j = − jβ+K +i K ′. We have dn(α j + jβ)=dn(K +i K ′) = 0. Since dn2z+k2 sn2z =1,
we obtain sn2(α j + jβ) = 1/k2, and then D j (α j ) = 0.

The numerator of Fj (α j ) is

N (α j ) = sn(α j + jθ)− sn(α j ) = sn(K + i K ′ + jβ)− sn(K + i K ′ − jβ).

Using the addition formula for the function sn z, we obtain

N (α j ) = 2
sn(K + i K ′) cn( jβ) dn( jβ)

1 − k2 sn2(K + i K ′) sn2( jβ)
.
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Since sn(K + i K ′) = k−1, we obtain N (α j ) = 2k−1 dn( jβ)

cn( jβ)
�= 0, and then Fj (α j ) = ∞.

On the other hand, if h �≡ j (mod n), we have α j + hβ = K + i K ′ + 2(h − j)pK/n.
First, we see thatα j +hβ �≡ K +i K ′ (mod.2K , 2i K ′),which implies that dn(α j +hβ) �= 0.
We also see that α j + hβ �≡ i K ′ (mod.2K , 2i K ′), which implies that sn(α j + hβ) �= ∞.

We conclude that Dh(α j ) �= 0.
Let us show that if sn z = ∞, then Fh(z) �= ∞.
Since the functions sn z and sn(z + hθ) do not have common poles, sn(z + hθ) �= ∞.
On the other hand, as sn2z + cn2z = 1, we obtain

cn2 z

sn2 z
= −1, and then Fh(z) = −1

sn(z + hθ)
cn z

sn z
− cn(z + hθ)

If we had Fh(z) = ∞, then

sn(z + hθ)
cn z

sn z
= cn(z + hθ),

whence sn2(z + hθ) = −cn2(z + hθ) �= ∞, and sn2(z + hθ)+ cn2(z + hθ) = 0, which is
impossible.

Similarly, we see that if sn(z + hθ) = ∞, then Fh(z) �= ∞.
Now, let us prove that Fh(α j ) �= ∞. We have Dh(α j ) �= 0, and we have proved that we

can suppose sn(α j ) �= ∞ and sn(α j + hθ) �= ∞, then

Fh(α j ) = sn(α j + hθ)− sn α j

Dh(α j )
�= ∞.

��
4.2 Irregular Poncelet polygons with an odd number of sides

Proposition 14 Let E and C be confocal ellipses such that there exists a Poncelet polygon
P inscribed in E and circumscribed about C. We suppose that the number of sides of P is
odd. Then there exists a Poncelet polygon satisfying the following condition.

If the arc lengths ti of the vertices and crossings are measured from a vertex P0, then the
numbers 1 and ti , ti �= 0 are linearly independent over Q.

Proof

Let E = { x2

a2 + y2

b2 = 1}, a > b > 1, and C = {x2 + y2

c2 = 1}, c < 1

be our ellipses.
Let us consider the Jacobi parametrizations of E and C by means of elliptic functions,

and let θ = 4pK/n. To each real number ϕ corresponds a Poncelet polygon Pϕ through
M(ϕ) = (

cn ϕ, c sn ϕ
)
. Let us denote ϕ j = ϕ+ jθ, M j = M(ϕ j ), and let � j be the tangent

to C at M j . The equation of � j is

x cn ϕ j + y

c
sn ϕ j = 1.

Let Qh, j = �h
⋂
�h+ j , j �≡ 0 (mod n). The abcissa xh, j of Qh, j is

xh, j = − sn ϕh + sn(ϕh + jθ)

sn(ϕh + jθ) cn ϕh − cn(ϕh + jθ)sn ϕh
= Fj (ϕh)
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where Fj is the function defined in Lemma 13. The abcissa of Ph = Qh,−1 = Qh−1,1 will
also be denoted by xh = xh,−1. The distance Ph Qh, j is |dh, j | where

dh, j = dh, j (ϕ) =
√

1 − c2

sn ϕh

√
sn2ϕh + c2

1 − c2

(
xh − xh, j

)

Since c2/(1 − c2) > 1, the function dh, j (ϕ) is meromorphic in a neighborhood of the real
axis.

Our first step is to prove that the functions 1 and dh, j (ϕ), j �≡ −1 (mod n) are linearly
independent over C.

Let λh, j and λ be complex numbers such that
∑n

h=1
∑n−2

j=1 λh, j dh, j = λ, or

n∑
h=1

√
1 − c2

sn ϕh

√
sn2ϕh + c2

1 − c2

( n−2∑
j=1

λh, j (xh − xh, j )

)
= λ.

Since c2/(1 − c2) > 0, we see by Lemma 11 that the functions fh(ϕ) =√
sn2ϕh + c2/(1 − c2) do not possess any common zero. Hence, in the neighborhood of

a zero of fh(ϕ) this function is not meromorphic, while the other functions are.
This implies that for every h = 1 . . . n we have

n−2∑
j=1

λh, j
(
xh − xh, j

) = 0, and then λ = 0.

Using our expressions of the abcissas xh, j , we obtain the following relation between mero-
morphic functions

n−2∑
j=1

λh, j
(
F−1(z)− Fj (z)

) = 0.

By Lemma 13, for every integer j �= 0 there exists a number α j such that Fj (α j ) = ∞, and
Fh(α j ) �= ∞ if h �≡ j (mod n). Letting z = α j , we obtain λh, j = 0, which concludes the
proof of the linear independence of our functions.

Now, we shall prove that for most ϕ ∈ R, the numbers dh, j (ϕ) and 1 are linearly inde-
pendent over Q.

For every nonzero collection of rational numbers� = (λ, λh, j ), let us define the function
F� by F�(ϕ) = λ−∑

h, j λh, j dh, j (ϕ). By our first step, this function is not identically zero,
and it is meromorphic in a neighborhood of R. Therefore, the set of its real zeros is countable.
Consequently, the set of all real numbers ϕ such that 1 and the numbers dh, j (ϕ) are linearly
dependent over Q is countable. By cardinality, we deduce that the complementary set is not
countable, hence nonempty. Consequently, there exists a real ϕ such that 1 and the numbers
|dh, j (ϕ)| are linearly independent over Q.

Now, let us parameterize our Poncelet polygon by arc length, starting from P0 for t0 ∈ Q.
The arc length th, j of Qh, j is

th, j = t0 + d(P0, P1)+ d(P1, P2)+ · · · + d(Ph−1, Ph)+ d(Ph, Qh, j )

= t0 + |d0,1| + |d1,1| + |d2,1| + · · · + |dh−1,1| + |dh, j |.
The result follows from the independence of the numbers 1 and |dh, j |. ��

We shall also need an analogous result for links.
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Proposition 15 Let E and C be confocal ellipses such that there exists a polygon of an odd
number of sides inscribed in E and circumscribed about C.

For any integer μ, there exist μ Poncelet polygons P(0),P(1), . . . ,P(μ−1) satisfying the
following condition:

for each such polygon, if ti are the arc lengths corresponding to its vertices , its crossings,
an its intersections with the other polygons, then the numbers 1 and ti , i �= 0 are linearly
independent over Q.

Proof Let τ = θ

μ
, and let us denote Mh = M(ϕ+ hτ) ∈ C, and �h the tangent to C

at Mh . Let us consider the Poncelet polygons P = P(0), P(1), . . . ,P(μ−1) through the points
M0,M1, . . . ,Mμ−1. The polygonP is tangent to C at the points M0,Mμ,M2μ, . . . ,M(n−1)μ.
The vertices and crossings of P are the points Qh, j = �h

⋂
�h+ j , where h ≡ 0 (mod μ).

Just as before, it can be proved that the distances 1 and |dh, j (ϕ)|, h ≡0, j �≡0, j �≡ −1
(mod μ) are linearly independent over Q, except for a countable set of numbers ϕ.

Consequently, the number 1 and the arc lengths ti , i �= 0 of the crossings and vertices of
P are linearly independent over Q except on a countable set of values of ϕ.

By cardinality, we can suppose that the same property is true for each polygon P( j),

j = 0, . . . , μ− 1, which proves our result. ��

5 Proof of the theorem

We will use Kronecker’s theorem (see [10, Theorem 443]):

Theorem 16 If θ1, θ2, . . . , θk, 1 are linearly independent over Q, then the set of points(
(mθ1), . . . , (mθk)

)
is dense in the unit cube, when m varies over N. Here (x) denotes the

fractional part of x.

Now, we can prove our main theorem.

Theorem 17 Let E be an ellipse which is not a circle, and let D be the elliptic cylinder
D = E × [0, 1]. Every knot (or link) is a billiard knot (or link) in D.

Proof First, we consider knots. By Theorem 7 there exists a knot isotopic to K , whose pro-
jection on the xy-plane is a billiard trajectory of odd period in the ellipse E . If t0, t1, . . . , tk
are the arc lengths corresponding to the vertices and crossings, we can suppose by Proposition
14 that the numbers t1, . . . , tk, and 1 are linearly independent over Q. Rescaling if necessary,
we can suppose that the total length of the trajectory is 1.

Let us consider the polygonal curve defined by (x(t), y(t), z(t)), where z(t) is the saw-
tooth function z(t) = 2|(mt + ϕ)− 1/2| depending on the integer m and on the real number
ϕ. If the heights z(Pj ) of the vertices are such that z(Pj ) �= 0, z(Pj ) �= 1, then it is a periodic
billiard trajectory in the elliptic cylinder D = E × [0, 1] (see [12,13,16,18,25]). If we set
ϕ = 1/2 + z0/2, z0 ∈ (0, 1), we have z(0) = z0. Now, using Kronecker’s theorem, there
exists an integer m such that the numbers z(ti ) are arbitrarily close to any specified collection
of heights, which completes our proof.

The case of μ-component links is similar. First, by Theorem 7, we find a diagram that is
the union of μ Poncelet polygons with the same odd number of sides. Then, by Proposition
15 and Kronecker’s theorem, we parameterize each component so that the heights of the
vertices and crossings are close to any specified list. ��
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