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Abstract

Laver tables An are certain finite shelves (i.e., sets endowed with a bi-
nary operation distributive with respect to itself). They originate from
Set Theory and, in spite of an elementary definition, have complicated
combinatorial properties. They are conjectured to approximate the free
monogenerated shelf F1, this conjecture being currently proved only un-
der a large cardinal axiom. This talk is devoted to our dreams concerning
potential braid and knot invariant constructions using Laver tables, and
to some real results in this direction, such as a detailed description of 2-
and 3-cocycles for the An. The rich structure of the latter, as well as spec-
tacular applications of F1 to Braid Theory, promise interesting topological
consequences.

1. A Laver table is...

We start with a formal presentation of the main characters of our story:

Definition 1.1. ➺ A shelf is a set S endowed with a binary operation ⊲ satisfying
the (left) self-distributivity condition

a ⊲ (b ⊲ c) = (a ⊲ b) ⊲ (a ⊲ c). (1)

➺ The free shelf generated by a single element is denoted by F1.
➺ The Laver table An is the unique shelf ({1, 2, 3, . . . , 2n}, ⊲n) satisfying the initial

condition

a ⊲n 1 ≡ a+ 1 mod 2n. (2)

When working modulo N , we will systematically replace the element 0 with N ,
which is a less conventional representative of the same class. Further, all formulas
in An will only hold modulo 2n, which will be often omitted for brevity.

While the first two notions regularly appear (under different names) in Low-Di-
mensional Topology, Set Theory and Hopf Algebra Theory, the last one is much more
exotic. In this preliminary section we will discuss its origin, explain why it is well
defined, and present some of its (rather astonishing) properties.
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Laver tables were discovered by Richard Laver ([Lav95]) as a by-product of his
study of iterations of elementary embeddings in Set Theory. Concretely, for any set S,
the set of its self-embeddings Emb(S) := { f : S →֒ S } can be endowed the following
shelf structure:

f ⊲ g =




fgf−1 on the image Im(f) of f,

Id on the complement of Im(f).

Laver took as S a certain limit rank Vλ and supposed it to admit a non-bijective
elementary (= preserving all the properties definable in terms of operation ∈) self-
embedding f0. This is the famous Axiom I3 in Set Theory, which can be neither
proved nor refuted in Zermelo-Fraenkel axiomatic system. Under this assumption,
Laver showed that

➺ f0 generates a copy of the free shelf F1 in Emb(Vλ);
➺ this copy admits finite quotients of size 2n, which are precisely our An;
➺ the An form a projective system whose inverse limit contains a copy of F1, and

can thus be viewed as finite approximations of F1.
These results are represented in the upper half of Figure 1; the dotted lines stress that
everything holds true only modulo the unprovable set-theoretic Axiom I3.
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Figure 1: Set-theoretic origins and topological applications of Laver tables

Later, Richard Laver found the completely elementary definition of Laver tables
given above. In particular, he proved the following

Theorem 1.2. 1. For any n ∈ N, conditions (1)-(2) define a unique binary opera-
tion on the set {1, 2, 3, . . . , 2n}.

2. Laver tables form a projective system of shelves, via the projections

pn : An −→ An−1,

a 7−→ a mod 2n−1.

The approximation result mentioned above now appears as

Conjecture 1.3. The inverse limit of the shelves An contains a copy of F1.

Much effort has been directed to a proof of this conjecture which would not be
based on set-theoretic axioms (see for instance [DJ97, Deh00, Deh14] and references
therein), so far without satisfactory results.



A Laver table An is presented by its multiplication table, containing the value
of p ⊲n q in the cell (p, q). One can thus talk about the columns and rows of An.
Figure 2 contains the smallest examples. Note that ⊲1 is nothing else than operation
“implication” from Logic (under the identification 1 = False, 2 = True).

Let us now state some combinatorial properties of Laver tables. The last two
properties, although elementary-stated, are currently established only under Axiom I3.

➺ The rows of any Laver table An are periodic. Concretely, for every 1 6 p 6 2n,
there exists an integer 2r satisfying

p+ 1 = p ⊲n 1 < p ⊲n 2 < · · · < p ⊲n 2r = 2n,

and the subsequent values p ⊲n q then repeat periodically. The number 2r is
called the period of p in An, and is denoted by πn(p).

➺ In particular, everyone in the pth row is larger than p, except for the last row.
➺ Certain rows and columns of An are particularly easy to describe:

2n ⊲n q = q, (2n − 1) ⊲n q = 2n,

p ⊲n 2n = 2n, p ⊲n 2n−1 = 2n if p 6= 2n.

The periods of some rows are also easy to determine:

πn(2n) = 2n, πn(2n − 1) = 1,

πn(2n−1) = 2n−1, πn(2n − 2) = πn(2n − 3) = 2.

However, one does not know any closed formulas either for p ⊲n q, or for πn(p).
➺ Any Laver table is generated (as a shelf) by the single element 1. More precisely,

An is the quotient of the free shelf F1 (generated by an element 1) by relation

(· · · ((1 ⊲n 1) ⊲n 1) · · · ) ⊲n 1 = 1,

where the term 1 is repeated 2n + 1 times on the left.
➺ All other finite monogenerated shelves can be obtained from the An by certain

canonical procedures described by A. Drápal (cf. [Drá97, Sme13]).
➺ πn(1) →

n→∞

∞.

➺ For all n, one has πn(1) 6 πn(2).
All these properties are evidences of the rich combinatorics behind Laver tables.

A0 1
1 1

A1 1 2
1 2 2
2 1 2

A2 1 2 3 4
1 2 4 2 4
2 3 4 3 4
3 4 4 4 4
4 1 2 3 4

A3 1 2 3 4 5 6 7 8
1 2 4 6 8 2 4 6 8
2 3 4 7 8 3 4 7 8
3 4 8 4 8 4 8 4 8
4 5 6 7 8 5 6 7 8
5 6 8 6 8 6 8 6 8
6 7 8 7 8 7 8 7 8
7 8 8 8 8 8 8 8 8
8 1 2 3 4 5 6 7 8

Figure 2: Multiplication tables for the first four Laver tables



2. Dreams: braid and knot invariants based on Laver tables

We now turn to the lower part of Figure 1. We will describe how the arrow on the
right works, and how we would like the arrow on the left to work; the dashed line used
to draw the latter stresses its partially imaginary character. This section can be seen
as motivation for Section 3, and as a presentation of some related open questions.

Shelves have gained recognition among knot theorists due to coloring techniques.
Concretely, a coloring of a positive braid diagram D by a shelf (S, ⊲) assigns an element
of S to every arc of D in such a way that a b-colored strand becomes (a ⊲ b)-colored

when it over-crosses an a-colored strand, as shown on Figure 3 A .

b a

a a ⊲ b
A

a ⊲̃ ba

ab
B

Figure 3: Coloring rules for positive and negative crossings

Now, we want colorings to say something about the positive braid βD represented
by D. Therefore, we want Reidemeister III move to induce only local coloring changes,
keeping fixed all colors outside the small ball where the move is realized. Figure 4
shows that this happens if and only if operation ⊲ is self-distributive.
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Figure 4: Reidemeister III move ⇐⇒ self-distributivity

Hence invariants of positive braids can be obtained by counting the number of
(S, ⊲)-colorings of their diagrams, or by fixing the colors of all the leftmost arcs and
considering the induced colors of the rightmost arcs:

positive braid invariants
colorings
 shelf

These ideas extends to
➺ arbitrary braids if (S, ⊲) is a rack — that is, admits a second binary operation ⊲̃

with is the left inverse of ⊲, in the sense that

a ⊲̃ (a ⊲ b) = b = a ⊲ (a ⊲̃ b); (3)

in this case, the coloring rule from Figure 3 B completes that from Figure 3 A ;
➺ and to knots if (S, ⊲) is a quandle (= a rack where every element is idempotent:

a ⊲ a = a); only counting invariants are relevant in this case.
Such shelf/rack/quandle invariants turn out to be extremely powerful and well adapted
for actual calculations.

Laver tables and F1 are shelves, and thus yield positive braid invariants according to
the recipes above. However, they are not racks, except for the trivial A0. Nevertheless,



Patrick Dehornoy managed to refine the above analysis of F1-colorings and to extract
invariants of arbitrary braids out of them (cf. [Deh92, Deh94, Deh00, Kas02]). Let us
give some details. To deal with arbitrary braids, one should extend the (S, ⊲)-coloring

rule from Figure 3 A to negative crossings so that Reidemeister II move induces only
local coloring changes. For this, the color propagation map

σ : S × S −→ S × S,

(a, b) 7−→ (a ⊲ b, a) (4)

(see Figure 3 A ) should be invertible, which is equivalent to (S, ⊲) being a rack. For F1

the map σ is not surjective but is injective, hence partially invertible. Thus one can
apply the coloring rule from Figure 3 B if one has sufficient control on the colors
that appear on the left. This control is attained by using a normal form for braids,
which, roughly, presents a braid as a negative part followed by a positive part, in a
way optimal in some sense. Dehornoy showed that for two braids β and β ′ taken in
this normal form, one can always choose some colors a = (a1, . . . , an) on the left which
can be propagated all the way to the right along any of the two braids, and that the
resulting colors on the right, denoted by aβ and aβ ′, us the same if and only if β ≃ β ′.
Moreover, Dehornoy proved that the left division relation

a |l b ⇐⇒ b = a ⊲ c for some c (5)

induces a total ordering on F1, still denoted by |l. For any k ∈ N, this ordering extends
to F×k

1 in the lexicographical way. Now, relation

β < β ′ ⇐⇒ aβ |l aβ
′

turns out to be a well-defined total left-invariant (i.e., β < β ′ implies αβ < αβ ′ )
ordering of braids. Note that the same ordering can be obtained in a number of ways,
algebraic as well as geometric (cf. for instance [FGR+99, SW00, Kas02]). Since its
discovery, the braid ordering has been extensively used in the study of braids ([MN03,
Mal04, Ito11a, Ito11b, Ito14]). In particular, it is the base of very efficient algorithms
for distinguishing braids ([Deh97, Mal01, Dyn03]).

Recall that a Laver table is a quotient of F1 by (2). This relation destroys the
injectivity of the map σ. Since the structure is finite, the map is not surjective either.
Therefore Dehornoy’s methods do not apply here. However, since at least conjecturally
Laver tables are finite approximations of F1, and the F1-colorings distinguish all braids,
it is natural to expect that An-colorings can also say a lot about arbitrary braids.
Moreover, because of the finiteness, they are well adapted for computations. The
following question thus seems very promising:

Question 2.1. How can Laver tables be exploited in the investigation of arbitrary braids
and knots?

A deeper understanding of An-colorings of positive braids could give a clue to the
case of arbitrary braids:

Question 2.2. What topological or algebraic properties of positive braids can be ex-
tracted from An-colorings of their diagrams?

See [Deh14] for an extended discussion of these questions.



3. Reality: 2- and 3-cocycles for Laver tables

In order to simplify the adaptation of An-colorings to new contexts — in particular to
arbitrary braids, with Question 2.1 in mind — we propose to add more flexibility to
their construction. To do this, we use an idea classical to self-distributivity: colorings
are enriched with weights. These weights are calculated in a special way using some
integer-valued functions on A×2

n or A×3
n , which are in fact 2- and 3-cocycles for the

renowned rack cohomology theory for An. In [DL14], P. Dehornoy and the author gave
a complete description of these cocycles, and showed that they capture all essential
combinatorial properties of Laver tables. This section is devoted to details.

We start with recalling the basics of cohomology theory for self-distributive struc-
tures, as developed in [FRS95, CJK+03].

Definition 3.1. For a shelf (S, ⊲), its rack cohomology Hk
R
(S) is defined as the coho-

mology of the complex (Hom(S×k,Z), dk
R
), where

(dk
R
f)(a1, . . . , ak+1) =

k+1∑

i=1

(−1)i−1(f(a1, . . . , ai−1, ai ⊲ ai+1, . . . , ai ⊲ ak+1)

− f(a1, . . . , ai−1, ai+1, . . . , ak+1)).

The 2-cocycles from this theory — that is, maps φ : S × S → Z satisfying

φ(a ⊲ b, a ⊲ c) + φ(a, c) = φ(a, b ⊲ c) + φ(b, c) (6)

— are of particular importance. Evaluate such a 2-cocycle on the colors adjacent to
each crossing of an (S, ⊲)-colored positive braid diagram as shown on Figure 5, and sum
up the values obtained. The result is called the (Boltzmann) weight of the coloring.
Figure 5 proves that the multi-set of the weights of all possible (S, ⊲)-colorings is an
invariant of positive braids.

a

b

c c

a ⊲ b

a a ⊲ c

a ⊲ b

a

φ(a, b)+φ(a, c)+φ(a ⊲ b, a ⊲ c)

a

b

c b

a

b ⊲ c a

b

φ(b, c)+φ(a, b ⊲ c)+ φ(a, b)

Figure 5: Two-cocycle φ  Boltzmann weights for colored diagrams

These cocycle invariants sharpen the shelf invariants obtained by a simple counting
of colorings: the latter appear when φ is any constant 2-cocycle. A slight modification
of this method involves region coloring and rack 3-cocycles; see Figure 6, where region
colors are put in boxes, and only relevant colors are indicated for the sake of readability.
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bd

b ⊲ d

ψ(b, c, d)+ψ(a, b ⊲ c, b ⊲ d)+ψ(a, b, d)

Figure 6: Three-cocycle ψ  Boltzmann weights for colored diagrams



One can thus extract a whole system of invariants out of a single shelf:

positive braid invariants
colorings &

 
weights

shelf & 2- or 3-cocycle

In order to feed Laver tables into the machinery above, one should first explicitly
calculate their 2- and 3-cocycles. This was done in [DL14]:

Theorem 3.2. 1. For every n > 0, the 2-cocycles for An make a free Z-module
of rank 2n, with a basis consisting of the constant cocycle and of 2n − 1 explicit
{0, 1}-valued coboundaries defined for 1 6 q < 2n by

φq,n(a, b) =





1 if q occurs in the column b, but not in the column a ⊲n b of An,

0 otherwise.

2. For every n > 0, the 3-cocycles for An make a free Z-module of rank 22n −2n +1,
with a basis consisting of the constant cocycle and of 22n − 2n explicit {0,±1}-
valued coboundaries.

The value tables for φq,3 are presented on Figure 7; the cell (a, b) of such a table
contains the value of φq,3(a, b), and notation · replaces 0 for a better readability.

φ1,3 1 2 3 4 5 6 7 8
1 1 · · · · · · ·
2 1 · · · · · · ·
3 1 · · · · · · ·
4 1 · · · · · · ·
5 1 · · · · · · ·
6 1 · · · · · · ·
7 1 · · · · · · ·
8 · · · · · · · ·

φ2,3 1 2 3 4 5 6 7 8
1 · 1 · · · · · ·
2 1 1 · · 1 · · ·
3 1 1 · · 1 · · ·
4 · 1 · · · · · ·
5 1 1 · · 1 · · ·
6 1 1 · · 1 · · ·
7 1 1 · · 1 · · ·
8 · · · · · · · ·

φ3,3 1 2 3 4 5 6 7 8
1 1 · 1 · 1 · · ·
2 · · 1 · · · · ·
3 1 · 1 · 1 · · ·
4 · · 1 · · · · ·
5 1 · 1 · 1 · · ·
6 1 · 1 · 1 · · ·
7 1 · 1 · 1 · · ·
8 · · · · · · · ·

φ4,3 1 2 3 4 5 6 7 8
1 · · · 1 · · · ·
2 · · · 1 · · · ·
3 · 1 · 1 · 1 · ·
4 · · · 1 · · · ·
5 · 1 · 1 · 1 · ·
6 · 1 · 1 · 1 · ·
7 1 1 1 1 1 1 1 ·
8 · · · · · · · ·

φ5,3 1 2 3 4 5 6 7 8
1 1 · · · 1 · · ·
2 1 · · · 1 · · ·
3 1 · · · 1 · · ·
4 · · · · · · · ·
5 1 · · · 1 · · ·
6 1 · · · 1 · · ·
7 1 · · · 1 · · ·
8 · · · · · · · ·

φ6,3 1 2 3 4 5 6 7 8
1 · 1 · · · 1 · ·
2 · 1 · · · 1 · ·
3 1 1 1 · 1 1 1 ·
4 · · · · · · · ·
5 · 1 · · · 1 · ·
6 · 1 · · · 1 · ·
7 1 1 1 · 1 1 1 ·
8 · · · · · · · ·

φ7,3 1 2 3 4 5 6 7 8
1 1 · 1 · 1 · 1 ·
2 · · · · · · · ·
3 1 · 1 · 1 · 1 ·
4 · · · · · · · ·
5 1 · 1 · 1 · 1 ·
6 · · · · · · · ·
7 1 · 1 · 1 · 1 ·
8 · · · · · · · ·

Figure 7: Two-coboundaries for A3

It turns out that 2-cocycles capture a lot of combinatorial information about the
structure of Laver tables — certainly a promising feature in view of potential applica-
tions. We give one example here; see [DL14] for other illustrations.

Proposition 3.3. For every n, the 2-cocycle φ2n−1,n encodes periods in An in the sense
that, for every p < 2n, the value of πn(p) is the smallest q satisfying φ2n−1,n(p, q) = 1.



Compare in particular the value table for φ4,3 and the periods for A3, which can be
read from its multiplication table (Figure 2).

We showed that 2- and 3-cocycles for Laver tables yield rich families of positive
— and potentially arbitrary — braid invariants. However, a deeper understanding of
these invariants is missing. Question 2.2 can thus be upgraded as follows:

Question 3.4. What topological or algebraic properties of positive braids can be ex-
tracted from An-colorings of their diagrams, weighted using rack 2- or 3-cocycles?

4. Bonus: right division ordering for Laver tables

Our description of 2-cocycles for Laver tables (Theorem 3.2) contains an explicit {0, 1}-
valued basis. Being {0, 1}-valued is extremely important for combinatorial interpreta-
tions. In particular, the Boltzmann weight associated to such a cocycle simply counts
crossings colored according to some patterns. A study of these patterns is thus the only
ingredient missing for understanding the invariants produced. Now, the construction of
this {0, 1}-valued basis in [DL14] heavily used a (quite surprising) new partial ordering
on Laver tables, which is also of independent interest. It is discussed in this section.

Recall the left division relation (5), which can be defined for any shelf. As mentioned
above, it induces a total ordering on the free shelf F1. For Laver tables this relation
is less interesting, since its transitive closure is the trivial relation: 2n ⊲n q = q and
p ⊲n 2n = 2n imply p |l 2n |l q for all p, q. However, the right division relation

a |r b ⇐⇒ b = c ⊲ a for some c

is much more profound for the An, as was shown in [DL14]:

Theorem 4.1. For a Laver table An, consider relation |r.
1. This relation is a partial ordering.
2. This ordering can be alternatively defined as follows:

a |r b ⇐⇒ Column(a) ⊇ Column(b),

where Column(x) is the set of all elements contained in the xth column of An.
3. The minimal and maximal elements w.r.t. |r are, respectively, 1 and 2n.
4. Any two columns of An have different contents.

Note that a thorough study of the columns of Laver tables was initiated earlier by
A. Drápal with a completely different motivation ([Drá95, Drá97]).

Hasse diagrams for the ordering |r on the first Laver tables are presented on Fi-
gure 8. In the top two diagrams, each node is accompanied with the content of the
corresponding column. One notes that the ordering is linear for n = 2, and not linear
for n = 3, 4 since for instance 2 and 3 are not comparable. For n 6 4 one gets lattice
orderings, since any two elements admit a least upper bound (and a greatest lower
bound); however, this is no longer the case for n > 5.
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1234

3
234

2
24

4
4

1
12345678

5
2345678
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34678

2
2468

7
4678

6
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4
48

8
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1 9 5 13

3 11 7 15

14 12 8 16

2 10 6

4

Figure 8: Partial ordering |r on An for n 6 4

For completeness, let us discuss the right division relation |r for F1. Consider the
depth function d : F1 → N, recursively defined by d(g) = 1, where g is the generator
of F1, and d(a ⊲ b) = d(b) + 1 for all a, b. One checks that this function is well-defined.
Now, a |r b implies d(b) = d(a) + 1. Hence relation |r is not transitive, but it induces a
partial ordering on F1 which in some sense sharpens the depth function. This ordering
is not total: for example, the elements ak = (· · · ((g ⊲ g) ⊲ g) · · · ) ⊲ g with k occurrences
of g are pairwise distinct but not distinguishable by d, since d(ak) = 2 for all k > 2.
As for now, we are not aware of any applications of this ordering on F1.

The properties and applications of the two division relations for Laver tables and
for F1 are summarized in Table 1. The most interesting cells are highlighted in grey.

a |r b if b = c ⊲ a a |l b if b = a ⊲ c

An

is a partial ordering induces a trivial relation
 a good base for 2-cocycles

F1
induces a partial ordering induces a total ordering

 ?  an ordering of braids

Table 1: Different orderings for shelves

5. Dreaming once again: rack cohomology for Laver tables and

other shelves

Independently of topological applications, rack cohomology calculations for the An are
instrumental for a better understanding of their structure. In [DL14], we treated only
small degrees. Here we speculate about what one expects in higher degrees.

Theorem 3.2 implies that Hk
R
(An) ≃ Z for all n and for k 6 3. Preliminary

computations confirm that it still holds true for k = 4. However, calculation methods
for general k are still missing.



Conjecture 5.1. For all Laver tables An and integers k, the rack k-cocycles for An

form free modules over Z of rank θk(2n), where θk is a degree k − 1 polynomial with
integer coefficients. Moreover, one has Hk

R
(An) ≃ Z, with (the equivalence class of) the

constant cocycle f(a1, . . . , ak) = 1 as generator.

It would be particularly interesting to find explicit formulas for the polynomials θk

and to study their properties.

Further, as follows from the work of A. Drápal ([Drá97, Sme13]), all finite shelves
with a single generator can be regarded as “interpolations” between Laver tables and
cyclic shelves Cm (i.e., sets {1, 2, 3, . . . , m} endowed with the operation a ◦m b ≡ b+ 1
mod m). Like for Laver tables, first cohomology groups for the Cm turn out to be
isomorphic to Z.

Conjecture 5.2. For all finite mono-generated shelves S, one has Hk
R
(S) ≃ Z.

References

[CJK+03] J. Scott Carter, Daniel Jelsovsky, Seiichi Kamada, Laurel Langford, and Masahico
Saito. Quandle cohomology and state-sum invariants of knotted curves and sur-
faces. Trans. Amer. Math. Soc., 355(10):3947–3989, 2003.

[Deh92] Patrick Dehornoy. Deux propriétés des groupes de tresses. C. R. Acad. Sci. Paris
Sér. I Math., 315(6):633–638, 1992.

[Deh94] Patrick Dehornoy. Braid groups and left distributive operations. Trans. Amer.
Math. Soc., 345(1):115–150, 1994.

[Deh97] Patrick Dehornoy. A fast method for comparing braids. Adv. Math., 125(2):200–
235, 1997.

[Deh00] Patrick Dehornoy. Braids and self-distributivity, volume 192 of Progress in Math-
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