Yang-Baxter Equation, Knots, Cohomology: a Golden Triangle

Victoria LEBED, HMI/TCD

UCD, October 2017

1 Yang-Baxter equation: basics

<u>Data</u>: vector space V, $\sigma: V^{\otimes 2} \to V^{\otimes 2}$.

Yang-Baxter equation (YBE)

$$\sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2 \colon V^{\otimes 3} \to V^{\otimes 3}$$

$$\sigma_1 = \sigma \otimes \operatorname{Id}_V, \, \sigma_2 = \operatorname{Id}_V \otimes \sigma$$

Avatars:

- → factorization condition for the dispersion matrix in the 1-dim. n-body problem (*McGuire & Yang 60'*);
- condition for the partition function in an exactly solvable lattice model (Onsager '44; Baxter 70');
- → quantum inverse scattering method for completely integrable systems (Faddeev et al. '79);
- → factorisable S-matrices in 2-dim. quantum field theory (Zamolodchikov '79);
- → R-matrices in quantum groups (*Drinfel' d 80'*);
- → C* algebras (Woronowicz 80');

Yang-Baxter equation: basics

<u>Data</u>: vector space V, $\sigma: V^{\otimes 2} \to V^{\otimes 2}$.

Yang-Baxter equation (YBE)

$$\sigma_1\sigma_2\sigma_1=\sigma_2\sigma_1\sigma_2\colon V^{\otimes 3}\to V^{\otimes 3}$$

$$\sigma_1 = \sigma \otimes \mathsf{Id}_V, \, \sigma_2 = \mathsf{Id}_V \otimes \sigma$$

Avatars:

→ braid equation in low-dimensional topology

$$\sigma \longleftrightarrow \searrow$$

$$YBE \longleftrightarrow$$

Reidemeister III move <u>Data</u>: set S, $\sigma: S^{\times 2} \to S^{\times 2}$.

Set-theoretic YBE (Drinfel' d'90)

$$\sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2 \colon S^{\times 3} \to S^{\times 3}$$

$$\sigma_1 = \sigma \times \operatorname{Id}_S, \, \sigma_2 = \operatorname{Id}_S \times \sigma$$

Solutions are called <u>braided sets</u>.

linearise deform
braided sets
$$\sim \sim \sim \sim \sim$$
 general solutions

Examples:

- $\sigma(x,y) = (x,y);$
- $\checkmark \ \sigma(x,y) = (y,x) \ \sim \ R$ -matrices;
- ✓ Lie algebra (V, []), central element $1 \in V$, $\sigma(x \otimes y) = y \otimes x + \hbar 1 \otimes [x, y]$.

YBE for
$$\sigma \iff$$
 Jacobi identity for []

3 Self-distributivity

✓ set S, binary operation \triangleleft , $\sigma(x,y) = (y, x \triangleleft y)$

Self-distributivity:
$$(x \triangleleft y) \triangleleft z = (x \triangleleft z) \triangleleft (y \triangleleft z)$$

Examples:

⇒ group S with $x \triangleleft y = y^{-1}xy$ yield a <u>quandle</u>: (SD) & $\forall y, x \mapsto x \triangleleft y$ is a bijection & $x \triangleleft x = x$;

$$z^{-1}(y^{-1}xy)z = (z^{-1}y^{-1}z)(z^{-1}xz)(z^{-1}yz)$$

 \Rightarrow abelian group $S, t: S \to S, \quad a \lhd b = ta + (1-t)b.$

Applications:

→ invariants of knots and knotted surfaces (Joyce & Matveev '82);

✓ set S, binary operation \triangleleft , $\sigma(x,y) = (y, x \triangleleft y)$

YBE for
$$\sigma \iff \mathsf{self}\text{-}\mathsf{distributivity}$$
 for \lhd

Self-distributivity:
$$(x \triangleleft y) \triangleleft z = (x \triangleleft z) \triangleleft (y \triangleleft z)$$

Applications:

- → invariants of knots and knotted surfaces (Joyce & Matveev '82);
- ⇒ a total order on braid groups (Dehornoy '91);
- → Hopf algebra classification (Andruskiewitsch-Graña '03);
- → integration of generalised Lie algebras (Kinyon '07);
- → study of braided sets (*L.-Vendramin '16*).

✓ monoid
$$(S, *, 1)$$
, $\sigma(x, y) = (1, x * y)$;

YBE for
$$\sigma \iff$$
 associativity for *

- ✓ lattice (S, \land, \lor) , $\sigma(x, y) = (x \land y, x \lor y)$.

All these braidings are idempotent: $\sigma \sigma = \sigma$.

Universal enveloping monoids:

$$\mathsf{Mon}(S,\sigma) = \langle \ S \mid xy = y'x' \ \mathsf{whenever} \ \sigma(x,y) = (y',x') \ \rangle$$

U. e. (semi)groups and algebras are defined similarly.

Theorem: (S, σ) a "nice" finite braided set, $\sigma^2 = Id \implies$

- ✓ Mon(S, σ) is of I-type, cancellative, Ore;
- ✓ $Grp(S, \sigma)$ is solvable, Garside;
- ✓ \mathbb{k} Mon (S, σ) is Koszul, noetherian, Cohen-Macaulay,

Artin-Schelter regular

(Manin, Gateva-Ivanova & Van den Bergh, Etingof – Schedler – Soloviev, Jespers – Okniński, Chouraqui 80'-...).

$$\mathsf{Mon}(S,\sigma) = \langle \ S \mid xy = y'x' \ \mathsf{whenever} \ \sigma(x,y) = (y',x') \ \rangle$$

Examples:

✓ monoid
$$(S, *, 1), \ \sigma(x, y) = (1, x * y),$$

$$S \simeq Mon(S, \sigma)/1_S = 1_{Mon};$$

$$\text{\checkmark Lie algebra $(V,\ [],\ 1)$, $\ $\sigma(x\otimes y)=y\otimes x+\hbar 1\otimes [x,y]$,}$$

$$\mathsf{UEA}(V,\,[\,]) \simeq {}^{\,\underline{\Bbbk}\,\mathsf{Mon}(S,\,\sigma)}/{1} = 1_{\mathsf{Mon}}.$$

$$\mathsf{Mon}(S,\sigma) = \langle \ S \mid xy = y'x' \ \text{whenever} \ \sigma(x,y) = (y',x') \ \rangle$$

Representations of (S, σ) := representations of \Bbbk Mon (S, σ) , i.e. vector spaces M with $M \times S \xrightarrow{\cdot} M$ s.t.

$$(m \cdot x) \cdot y = (m \cdot y') \cdot x'$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$m \cdot x \cdot y \qquad m \cdot x \cdot y$$

Examples:

- \Rightarrow trivial rep.: $M = \mathbb{k}, \ \mathfrak{m} \cdot \mathfrak{x} = \mathfrak{m};$
- \Rightarrow $M = \mathbb{k} \operatorname{Mon}(S, \sigma), \ \mathbf{m} \cdot \mathbf{x} = \mathbf{m} \mathbf{x};$
- → usual reps for monoids, Lie algebras, self-distributive structures.

A cohomology theory for YBE solutions should:

1) Describe deformations:
$$\sigma_0 \rightsquigarrow \sigma_0 + \hbar \sigma_1 + \hbar^2 \sigma_2 + \cdots$$
.

Difficult! Pioneers: Freyd-Yetter '89, Eisermann '05.

First approximation: diagonal deformations

$$\sigma_{q}(x,y) = q^{\omega(x,y)}\sigma(x,y), \ \omega \colon S \times S \to \mathbb{Z}.$$

 ω a 2-cocycle \implies σ_q a YBE solution.

2) Yield knot and knotted surface invariants (Carter et al. '01):

$$(S, \sigma)$$
-coloured diagram (D, \mathcal{C}) & $\omega \colon S \times S \to \mathbb{Z}$

$$\rightarrow \quad \text{Boltzmann weight } \mathscr{B}_{\omega}(\mathcal{C}) = \sum_{\substack{y' \\ x \nearrow y'}} \omega(x,y) - \sum_{\substack{x \\ y' \nearrow x'}} \omega(x,y).$$

$$\omega$$
 a 2-cocycle \implies a knot invariant given by $\{\mathscr{B}_{\omega}(\mathcal{C}) \mid \mathcal{C} \text{ is a } (S,\sigma)\text{-colouring of D}\}.$

7 A cohomology theory?

A cohomology theory for YBE solutions should:

- 3) Unify cohomology theories for
 - → associative structures,
 - → Lie algebras,
 - → self-distributive structures etc.
- + explain parallels between them (L. '13),
- + suggest theories for new structures (L.-Vendramin '16).
- 4) Compute the cohomology of \Bbbk Mon (S, σ) .

8 Braided cohomology

<u>Data</u>: braided set (S, σ) & bimodule M over it.

Construction:

 $d_1^{n;i}f$:

$$C^{n}(S, \sigma; M) = \text{Maps}(S^{\times n}, M),$$

 $d^{n} = \sum_{i=1}^{n+1} (-1)^{i-1} (d_{1}^{n;i} - d_{r}^{n;i}) : C^{n} \to C^{n+1},$

$$x'_{i} \cdot f(x'_{1} \dots x'_{i-1} x_{i+1} \dots x_{n+1})$$
 \uparrow
 $x'_{i} x'_{1} \dots x'_{i-1} x_{i+1} \dots x_{n+1}$
 $\downarrow \sigma$
 $\sigma_{1} \dots \sigma_{i-1} \uparrow$
 $\sigma_{1} \dots \sigma_{i-1} \uparrow$

Theorem:
$$\rightarrow d^{n+1}d^n = 0$$
;

 $H^n(S, \sigma; M) = \text{Ker } d^n / \text{Im } d^{n-1} \text{ is the } \underline{\text{nth cohomology group }} \text{ of } (S, \sigma) \text{ with coefficients in } M;$

- ightharpoonup for "nice" M, a cup product \smile : $H^n \otimes H^m \to H^{n+m}$;
- → other good properties.

9 A good theory?

- 1) & 2) For $\omega \in C^2(S, \sigma; \mathbb{Z})$, $d^2\omega = 0 \implies \omega \text{ yields Boltzmann weights}$ & diagonal deformations, $\omega = d^1\theta \implies \omega \text{ yields trivial...}$
- 3) Unifies classical cohomology theories.

Example: monoid
$$(S, *, 1)$$
, $\sigma(x, y) = (1, x * y)$,
$$d_1^{n;i}f: \dots x_{i-2} \underbrace{x_{i-1} x_i}_{1} x_{i+1} \dots \xrightarrow{\sigma_{i-1}}_{1}$$

$$\dots \underbrace{x_{i-2} 1}_{1 \times i-1} \underbrace{(x_{i-1} * x_i)}_{1 \times i-1} \underbrace{x_{i+1} \dots}_{1 \times i-1} \xrightarrow{\sigma_{i-2}}_{\dots}$$

$$\dots \underbrace{1x_{i-2} (x_{i-1} * x_i)}_{1 \times i-1} \underbrace{x_{i+1} \dots}_{1 \times i-1} \xrightarrow{\sigma_{i-2}}_{\dots}$$

$$1 x_1 \dots x_{i-2} (x_{i-1} * x_i) x_{i+1} \dots \longrightarrow$$

$$f(\ldots x_{i-2}(x_{i-1} * x_i) x_{i+1} \ldots).$$

9 A good theory?

4) Quantum symmetriser QS:

QS is an isomorphism when

- $\Rightarrow \sigma \sigma = \text{Id and Char } \mathbb{k} = 0 \text{ (Farinati & García-Galofre '16)};$
- \Rightarrow $\sigma\sigma = \sigma (L. '16).$

Applications: factorizable groups, Young tableaux.

Open problem: How far is QS from being an iso in general?