Structure groups of YBE solutions: cohomological applications

Victoria LEBED, Trinity College Dublin (Ireland)

Spa, June 2017

$$(ab)c = a(bc)$$

 $z^{-1}(y^{-1}xy)z = (z^{-1}y^{-1}z)(z^{-1}xz)(z^{-1}yz)$

Yang-Baxter equation

Data:

- monoidal category C (= Vect_k);
- object S;
- morphism $r: S \otimes S \rightarrow S \otimes S$.

braiding

 $\mathsf{YBE:} \quad \mathsf{r}_1\mathsf{r}_2\mathsf{r}_1 = \mathsf{r}_2\mathsf{r}_1\mathsf{r}_2 \colon \mathsf{S}^{\otimes 3} \to \mathsf{S}^{\otimes 3}$

 $r_1 = r \otimes \mathsf{Id}_S, r_2 = \mathsf{Id}_S \otimes r$

Topological avatar:

2 YBE zoology

We'll mostly work with set-theoretic solutions: C =**Set** (*Drinfel'd* '90).

linearise deform $\longrightarrow \longrightarrow \longrightarrow \longrightarrow$ linear solutions.

Example: r(x, y) = (y, x)

∧ R-matrices;

YBE for $r_{Lie} \underset{1 \text{ central}}{\longleftrightarrow} \text{Jacobi for } []$

Example: $r_{SD}(x, y) = (y, x \triangleleft y)$:

YBE for $r_{SD} \iff$ self-distributivity for \lhd

Self-distributivity: $(x \triangleleft y) \triangleleft z = (x \triangleleft z) \triangleleft (y \triangleleft z)$

3 Self-distributivity

Example: $r_{SD}(x, y) = (y, x \triangleleft y)$:

 $\mathsf{YBE} \text{ for } r_{\mathsf{SD}} \iff \mathsf{self}\mathsf{-distributivity} \text{ for } \triangleleft$

Self-distributivity: $(x \lhd y) \lhd z = (x \lhd z) \lhd (y \lhd z)$

Examples:

- group S with $x \triangleleft y = y^{-1}xy$:
- abelian group S, t: S \rightarrow S, $a \lhd b = ta + (1-t)b$.

Applications:

• invariants of knots and knotted surfaces (Joyce & Matveev '82);

• Hopf algebra classification (Andruskiewitsch-Graña '03).

Example: Involutive solutions r, i.e., $r^2 = Id_{S \times S}$.

A solution $r(a, b) = (\sigma_a(b), \tau_b(a))$ is called left non-degenerate (LND) if the maps τ_b are bijective.

<u>Theorem</u> (*Rump* '04): LND involutive solutions $\stackrel{1:1}{\longleftrightarrow}$ cycle sets.

<u>Theorem</u> (Soloviev & Lu-Yan-Zhu '00, L.-Vendramin '17):

- LND solution $(S, r) \rightsquigarrow$ SD operation \triangleleft_r on S;
- \triangleleft_r captures major properties of r; for instance,

$$r^2 = Id_{S \times S} \iff a \triangleleft_r b = a.$$

So, involutive and self-distributive solutions can be seen as two perpendicular axes in the space of all LND solutions. Schematically,

$$"0 \rightarrow \mathbf{CycleSets} \rightarrow \mathbf{LNDSol} \rightarrow \mathbf{SD} \rightarrow 0"$$

5 Getting more exotic

We will tolerate non-invertible solutions.

Example: free self-distributive structures.

Application: total order on braid groups (Dehornoy '91).

Even worse: some of our solutions are idempotent: rr = r.

Examples: \checkmark Monoid $(S, \cdot, 1)$, $r_{Ass}(x, y) = (1, x \cdot y)$:

YBE for
$$r_{Ass} \iff associativity for \cdot$$

✓ Factorised monoid G = HK, $S = H \cup K$, $r_{Fact}(x, y) = ((xy)_H, (xy)_K)$.

 $\checkmark \text{ Lattice } (S, \bigwedge, \bigvee), \ r_L(x,y) = (x \bigwedge y, x \bigvee y).$

6 Abstract nonsense?

So, YBE provides a unifying framework for many algebraic situations.

Question: Can anything non-trivial be done in such a general setting?

Answer: Yes!

- 1) A study of structure groups of solutions.
- 2) A (co)homology theory.

7/ Why should a group theorist care about YBE?

Structure group, or universal enveloping group of (S, r):

$$G(S, r) = \langle S | xy = y'x' \text{ whenever } r(x, y) = (y', x') \rangle$$

Structure monoids and algebras are defined similarly.

 $G(S,r,e) := \frac{G(S,r)}{e} = 1$

Examples:

- ✓ Factorised monoid G = HK, $r_{Fact}(x, y) = ((xy)_H, (xy)_K)$: Mon(H ∪ K, $r_{Fact}, 1_G) \simeq G$.

Strategy (Cedó-Jespers-del Río '10):

Step 1: classify all structure groups G (or certain quotients thereof); Step 2: classify all YBE solutions with $G(S, r) \cong G$.

<u>Theorem</u>: $r^2 = Id \implies$

- ✓ Mon(S, r) is of I-type, cancellative, Ore;
- \checkmark Grp(S, r) is solvable, Garside, Bieberbach;
- ✓ 𝑘 Mon(S, r) is Koszul, noetherian, Cohen–Macaulay,

Artin-Schelter regular

(Manin, Gateva-Ivanova & Van den Bergh, Etingof–Schedler–Soloviev, Jespers–Okniński, Chouraqui 80'-...).

8 Braided cohomology

Construction (Fenn et al. '93, Carter et al. '04, L. '13):

✓
$$C^n := Maps(S^{\times n}, \mathbb{Z}_m);$$

✓ $d^n : C^n \to C^{n+1},$ $d^n = \sum_{i=1}^{n+1} (-1)^{i-1} (d_1^{n;i} - d_r^{n;i}).$

Versions:

- ✓ a topological realisation;
- ✓ using quantum shuffles;

✓ using a differential graded bialgebra (*Farinati–García-Galofre* '16).

Why I like braided cohomology

(1) Describes diagonal deformations (Freyd-Yetter '89, Eisermann '05): $r_{\omega}(x,y) = q^{\omega(x,y)}r(x,y), \ \omega \colon S \times S \to \mathbb{Z}_{m}.$

 $d^2\omega = 0 \implies r_\omega$ is a YBE solution.

(2) Yields knot and knotted surface invariants (*Carter et al.* '01): (S,r)-coloured diagram (D, C) & $\omega: S \times S \to \mathbb{Z}_m$ \sim Boltzmann weight $\mathscr{B}_{\omega}(\mathbb{C}) = \sum_{\substack{y' \\ x \neq y'}} \omega(x, y) - \sum_{\substack{x \\ y' \neq x'}} \omega(x, y).$

- $d^2\omega = 0 \implies \sum t^{\mathscr{B}_{\omega}(\mathcal{C})}$ is a knot invariant;
- $\omega \omega' = d^1 \psi \implies \omega$ and ω' yield equivalent invariants.

9 Why I like braided cohomology

(3) Unifies cohomology theories for

- ✓ self-distributive structures
- ✓ associative structures
- ✓ Lie algebras

 $r_{SD}(x,y) = (y,x \triangleleft y)$

 $r_{Ass}(x,y) = (1, x \cdot y)$

 $r_{\text{Lie}}(x\otimes y)=y\otimes x+\hbar 1\otimes [x,y]$

.....

+ explains parallels between them,

+ suggests theories for new structures:

Example: cycle sets and braces (L.-Vendramin '17).

(4) Computes the cohomology of structure groups.

10 Comparing cohomologies

ΩS

Quantum symmetriser QS:

braided cohomology H*(S, Zm) cup product —

small complexes

<u>Theorem</u>: Ω S is an isomorphism when \checkmark rr = Id (Farinati-García-Galofre '16);

✓
$$rr = r (L. '17).$$

Open question: For general r?

Applications:

- \checkmark Spectral sequence for factorised monoids G = HK.
- Cohomology computations for plactic monoids.

Hochschild cohomology HH*(Mon $(S, r), \mathbb{Z}_m$)

cup product \sim

tools