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(ab)c = a(bc)

3

2 6 6

1 4 5

←→

z−1(y−1xy)z = (z−1y−1z)(z−1xz)(z−1yz)



1 Yang–Baxter equation

Data:

• monoidal category C (= Vectk);

• object S;

• morphism r : S⊗ S→ S⊗ S. braiding

YBE: r1r2r1 = r2r1r2 : S
⊗3 → S⊗3 r1 = r⊗ IdS, r2 = IdS⊗r

Topological avatar:

r ←→

YBE ←→ = Reidemeister III
move



2 YBE zoology

We’ll mostly work with set-theoretic solutions: C = Set (Drinfel ′d ’90).

linearise deform
linear solutions.

Example: r(x, y) = (y, x)

R-matrices;

rLie(x⊗ y) = y⊗ x+  h1⊗ [x, y]:

YBE for rLie ⇐⇒
1 central

Jacobi for [ ]

Example: rSD(x, y) = (y, x � y):

YBE for rSD ⇐⇒ self-distributivity for �

Self-distributivity: (x � y) � z = (x � z) � (y � z)



3 Self-distributivity

Example: rSD(x, y) = (y, x � y):

YBE for rSD ⇐⇒ self-distributivity for �

Self-distributivity: (x � y) � z = (x � z) � (y � z)

Examples:

• group S with x � y = y−1xy:

• abelian group S, t : S→ S, a � b = ta+ (1− t)b.

Applications:

• invariants of knots and kno�ed surfaces (Joyce & Matveev ’82);
y x � y

x y

• Hopf algebra classification (Andruskiewitsch–Graña ’03).



4 Two axes

Example: Involutive solutions r, i.e., r2 = IdS×S.

A solution r(a, b) = (σa(b), τb(a)) is called le� non-degenerate (LND) if

the maps τb are bijective.

Theorem (Rump ’04): LND involutive solutions
1:1
←→ cycle sets.

Theorem (Soloviev & Lu–Yan–Zhu ’00, L.–Vendramin ’17):

• LND solution (S, r) ; SD operation �r on S;

• �r captures major properties of r; for instance,

r2 = IdS×S ⇐⇒ a �r b = a.

So, involutive and self-distributive solutions can be seen as two

perpendicular axes in the space of all LND solutions. Schematically,

"0→ CycleSets→ LNDSol→ SD→ 0"



5 Ge�ing more exotic

We will tolerate non-invertible solutions.

Example: free self-distributive structures.

Application: total order on braid groups (Dehornoy ’91).

Even worse: some of our solutions are idempotent: rr = r.

Examples: ✓ Monoid (S, ·, 1), rAss(x, y) = (1, x · y):

YBE for rAss ⇐⇒
1 unit

associativity for ·

✓ Factorised monoid G = HK,

S = H ∪ K, rFact(x, y) = ((xy)H, (xy)K).

✓ La�ice (S,
∧
,
∨
), rL(x, y) = (x

∧
y, x

∨
y).



6 Abstract nonsense?

So, YBE provides a unifying framework for many algebraic situations.

�estion: Can anything non-trivial be done in such a general se�ing?

Answer: Yes!

1) A study of structure groups of solutions.

2) A (co)homology theory.



7 Why should a group theorist care about YBE?

Structure group, or universal enveloping group of (S, r):

G(S, r) = 〈 S | xy = y ′x ′ whenever r(x, y) = (y ′, x ′) 〉

Structure monoids and algebras are defined similarly.

G(S, r, e) := G(S, r)/e = 1

Examples:

✓ Factorised monoid G = HK, rFact(x, y) = ((xy)H, (xy)K):

Mon(H ∪ K, rFact, 1G) ≃ G.

✓ Lie algebra V , V ′ = V ⊕ k1, 1 central, rLie(x⊗ y) = y⊗ x+ 1⊗ [x, y]:

Alg(V ′, rLie, 1) ≃ UEA(V, [ ]).



7 Why should a group theorist care about YBE?

G(S, r) = 〈 S | xy = y ′x ′ whenever r(x, y) = (y ′, x ′) 〉

YBE solutions

examples

55
groups & algebras

methods
vv

Strategy (Cedó–Jespers–del Río ’10):

Step 1: classify all structure groups G (or certain quotients thereof);

Step 2: classify all YBE solutions with G(S, r) ∼= G.

Theorem: r2 = Id =⇒
✓ Mon(S, r) is of I-type, cancellative, Ore;

✓ Grp(S, r) is solvable, Garside, Bieberbach;

✓ kMon(S, r) is Koszul, noetherian, Cohen–Macaulay,

Artin–Schelter regular

(Manin, Gateva-Ivanova & Van den Bergh, Etingof–Schedler–Soloviev,

Jespers–Okniński, Chouraqui 80’-. . . ).



8 Braided cohomology

Construction (Fenn et al. ’93, Carter et al. ’04, L. ’13):

✓ Cn := Maps(S×n,Zm);

✓ dn : Cn → Cn+1, dn =
∑n+1

i=1 (−1)i−1(dn;i
l − dn;i

r ).

Versions:

✓ diagrammatic:

f•

dn;i
l f =

r

r

x1 ... xi ... xn+1x1 . . . xn+1

x ′ix
′
1 . . . x

′
i−1xi+1 . . . xn+1

f(x ′1 . . . x
′
i−1xi+1 . . . xn+1)

↑r1···ri−1

↑

✓ a topological realisation;

✓ using quantum shu�les;

✓ using a di�erential graded bialgebra (Farinati–García-Galofre ’16).



9 Why I like braided cohomology

1 Describes diagonal deformations (Freyd–Ye�er ’89, Eisermann ’05):

rω(x, y) = qω(x,y)r(x, y), ω : S× S→ Zm.

d2ω = 0 =⇒ rω is a YBE solution.

2 Yields knot and kno�ed surface invariants (Carter et al. ’01):

(S, r)-coloured diagram (D,C) & ω : S× S→ Zm

; Boltzmann weight Bω(C) =
∑

y ′

x
x ′

y

ω(x, y) −
∑

x

y ′

y

x ′

ω(x, y).

d2ω = 0 =⇒
∑

C

tBω(C) is a knot invariant;

ω −ω ′ = d1ψ =⇒ ω andω ′ yield equivalent invariants.



9 Why I like braided cohomology

3 Unifies cohomology theories for

✓ self-distributive structures rSD(x, y) = (y, x � y)

✓ associative structures rAss(x, y) = (1, x · y)

✓ Lie algebras rLie(x⊗ y) = y⊗ x+  h1⊗ [x, y]

........................

+ explains parallels between them,

+ suggests theories for new structures:

Example: cycle sets and braces (L.–Vendramin ’17).

4 Computes the cohomology of structure groups.



10 Comparing cohomologies

�antum symmetriser QS:

braided cohomology

H∗(S,Zm)

cup product ⌣

small complexes

QS
←−

Hochschild cohomology

HH∗(Mon(S, r),Zm)

cup product ⌣

tools

Theorem: QS is an isomorphism when

✓ rr = Id (Farinati–García-Galofre ’16);

✓ rr = r (L. ’17).

Open question: For general r?

Applications:

✓ Spectral sequence for factorised monoids G = HK.

✓ Cohomology computations for plactic monoids.
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