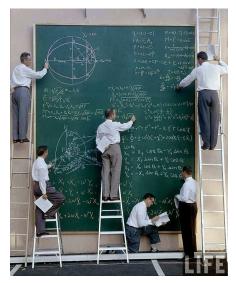
Geometry and Topology, or How Different a Mug and a Doughnut Really Are

Victoria LEBED, Research Fellow in Maths

What is mathematics?

Is it this?


And this?

Frank and Ernest $4 \pm \sqrt{x + x} \pm \sqrt{x}$, $4 \pm \sqrt{x} + x \pm \sqrt{x}$, $4 \pm \sqrt{x} \pm \sqrt{x} \pm \sqrt{x} + \sqrt{x} \pm \sqrt{x} + \sqrt{x} \pm \sqrt{x} + \sqrt{x} \pm \sqrt{x} + \sqrt{$

Copyright (c) 1994 by Thaves. Distributed from www.thecomics.com.

What is mathematics?

Sometimes yes:

NASA scientists with their board of calculations, 1961, Life magazine.

What is mathematics?

Sometimes yes:

A screenshot from Hidden Figures.

What is mathematics?

But maths is also all of this:

Maths is about understanding **mechanisms** and seeing **patterns**, not only about computing! It involves **creativity**, and is sometimes closer to arts and philosophy than to sciences.

Maths is about understanding **mechanisms** and seeing **patterns**, not only about computing! It involves **creativity**, and is sometimes closer to arts and philosophy than to sciences.

Fortune 500's Most Valued Characteristics in an Employee:

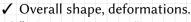
Characteristics	1999	1970	
Teamwork	1	10	
Problem Solving	2	12	
Interpersonal Skills	3	13	
Oral Communication	4	4	
Listening Skills	5	5	
Personal Career Development	6	6	
Creative Thinking	7	7	
Leadership	8	8	
Goal Setting/Motivation	9	9	
Writing	10	1	
Organizational Effectiveness	11	11	
Computational Skills	12	2	
Reading Skills	13	3	

Geometry

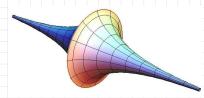
✓ Distances, angles, curvature.
 ✓ Overall shape, deformations.
 ✓ "Metallic mathematics".
 ✓ "Clay mathematics".

Geometry

✓ Distances, angles, curvature.
 ✓ "Metallic mathematics".
 ✓ mug ≠ doughnut


✓ Overall shape, deformations.✓ "Clay mathematics".

✓ mug = doughnut


Geometry

- ✓ Distances, angles, curvature.
- ✓ "Metallic mathematics".
- ✓ mug \neq doughnut
- Examples of applications:
- 1) surveying;
- 2) construction;
- astronomy;
- 4) the shape of the universe.

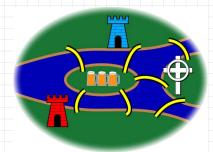
- "Clay mathematics".
- ✓ mug = doughnut

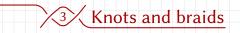
Geometry

Topology

- ✓ Distances, angles, curvature.
- Metallic mathematics".
- ✓ mug \neq doughnut
- Examples of applications:
- 1) surveying;
- 2) construction;
- 3) astronomy;
- 4) the shape of the universe.

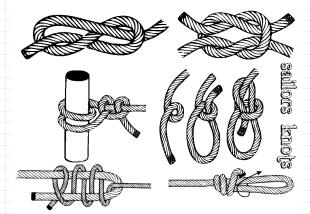
- Overall shape, deformations.
- ✓ "Clay mathematics".
- ✓ mug = doughnut
- Examples of applications:
- 1) Seven Bridges of Königsberg Problem;




Geometry

Topology

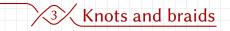
- Distances, angles, curvature.
- Metallic mathematics".
- ✓ mug \neq doughnut
- Examples of applications:
- 1) surveying;
- 2) construction;
- 3) astronomy;
- 4) the shape of the universe.


- Overall shape, deformations.
- ✓ "Clay mathematics".
- ✓ mug = doughnut
- Examples of applications:
- Seven Bridges of Königsberg Problem;
 knot theory.

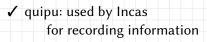
Knots and braids surround us:

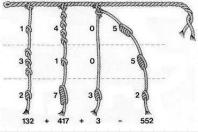
✓ rope knots in sailing, mountaineering

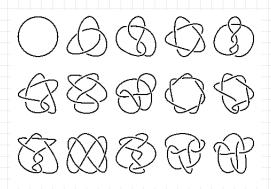
✓ ties



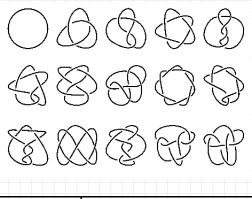
✓ hairstyles

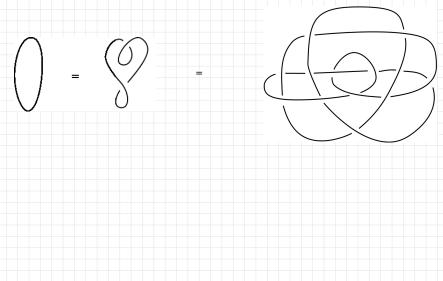


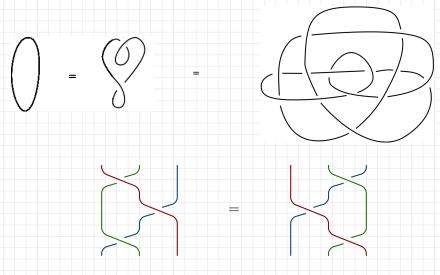


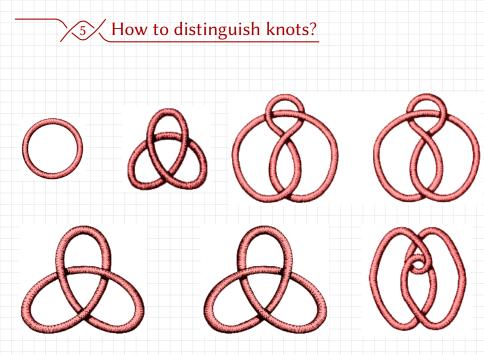

✓ decoration, religion

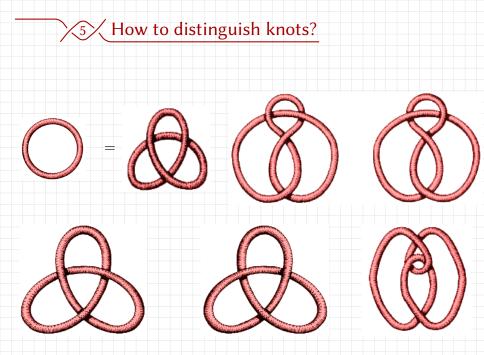


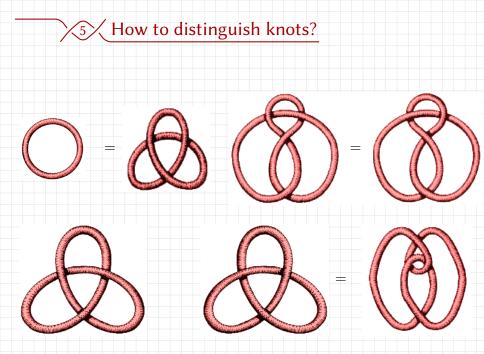



nature	many objects:			
	different material, size, usage			
mathematics	nathematics one abstraction: shape			

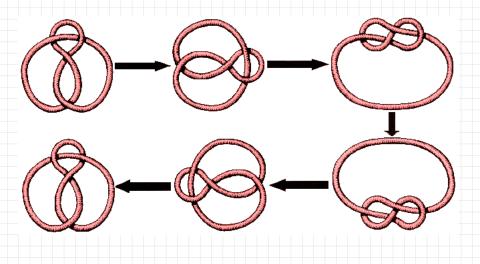

nature	many objects:			
	different material, size, usage			
mathematics	one abstraction: shape			

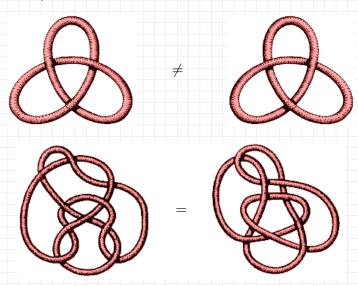

Mathematics begins when many objects are replaced with one abstraction.


In mathematics, knots and braids are considered up to deformation:

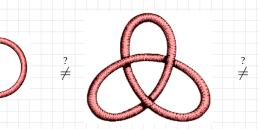


In mathematics, knots and braids are considered up to deformation:



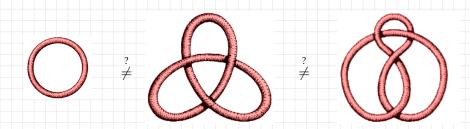


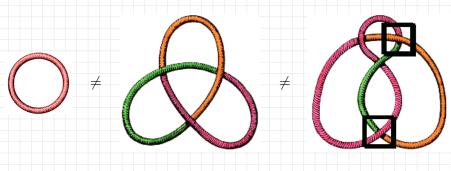
5 How to distinguish knots?



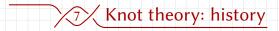
5 How to distinguish knots?

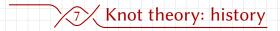
It is a difficult problem:





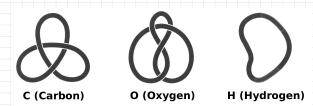
Knot colourings: 3 colours


Rule: If a knot K' is a deformation of a knot K, and K can be coloured by 3 colours, then K' can be coloured by 3 colours as well.


Can be coloured ?

n	0		yes		no

1867: Peter Tait experimented with smoke rings;



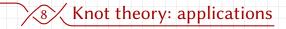
1867: Peter Tait experimented with smoke rings;

Lord Kelvin (Thomson): atoms = knotted tubes of ether

Knot theory: history

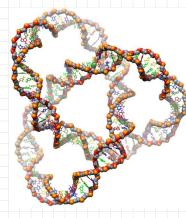
?

^{b1} → ³¹ ⊕ ⁴¹ ⊕ ⁵¹ ⊕ ⁵² ⊕ ⁶¹ ⊕ ⁶² ⊕ ⁶ \$\$\$`\$\$`\$\$`\$\$`\$\$`\$\$`\$\$`\$ B 8 Ø 818 ***** 815 B 816 B 817 B 817 B 820 813 `**B`B`B** S 8 8 ⁹¹⁰ ^{*}'**&**''**&**''**&**''**&**''**&** 8

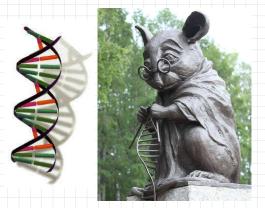

Knot theory: history

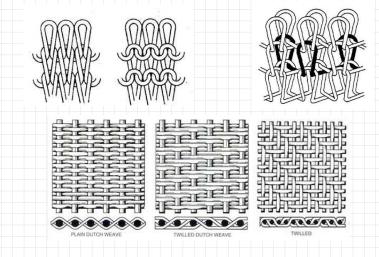
La Ce Pr Nd Pm Sm Fu Gd Th Dy Ho Fr Tm Yh Lu Ac Th Pa Lu S P Photo Photo

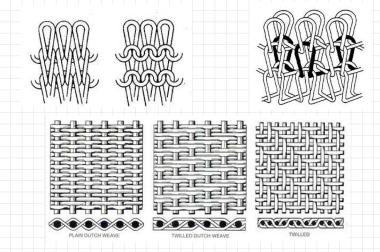
This is false!!!


?

✓ **Biology**: DNA molecules.




✓ **Biology**: DNA molecules.


Some enzymes can cut, twist, and reconnect the DNA. This changes the properties of the DNA. Knot theory is used to detect the action of enzymes. 8 Knot theory: applications

✓ **Textile**: weaving patterns.

8 Knot theory: applications

✓ **Textile**: weaving patterns.

✓ The shape of the universe question: all 3-dimensional spaces can be encoded by knots.