Twisted multi-distributivity and Lawrence representations of braid groups

Victoria LEBED, University of Nantes

Knots in Dallas, January 2015

√ '87, Jones: algebraic reps of Hecke algebras H_n;

- ✓ '87, Jones: algebraic reps of Hecke algebras H_n ;
- ✓ '90, Lawrence: homological reps of the H_n ;

- ✓ '87, Jones: algebraic reps of Hecke algebras H_n ;
- ✓ '90, Lawrence: homological reps of the H_n ;
- √ '94, Long-Moody: a generalization for the B_n; homological and algebraic versions;

- √ '87, Jones: algebraic reps of Hecke algebras H_n;
- ✓ '90, Lawrence: homological reps of the H_n ;
- √ '94, Long-Moody: a generalization for the B_n;
 homological and algebraic versions;
- √ '00, Krammer & Bigelow: certain Lawrence reps are faithful;

- ✓ '87, Jones: algebraic reps of Hecke algebras H_n ;
- ✓ '90, Lawrence: homological reps of the H_n ;
- √ '94, Long-Moody: a generalization for the B_n;
 homological and algebraic versions;
- ✓ '00, Krammer & Bigelow: certain Lawrence reps are faithful;
- ✓ '08, *Bigelow-Tian*: further generalization; completely algebraic version;

- ✓ '87, Jones: algebraic reps of Hecke algebras H_n ;
- ✓ '90, Lawrence: homological reps of the H_n ;
- √ '94, Long-Moody: a generalization for the B_n;
 homological and algebraic versions;
- ✓ '00, Krammer & Bigelow: certain Lawrence reps are faithful;
- ✓ '08, *Bigelow-Tian*: further generalization; completely algebraic version;
- ✓ here: a combinatorial version.

colorings by
$$(S, \triangleleft)$$

$$a \times a \triangleleft b$$

$End(S^n) \leftarrow B_n^+$	RIII	$(a \triangleleft b) \triangleleft c = (a \triangleleft c) \triangleleft (b \triangleleft c)$	shelf
$Aut(S^{n}) \leftarrow B_{n}$	RII	$(a \triangleleft b) \stackrel{\sim}{\triangleleft} b = a = (a \stackrel{\sim}{\triangleleft} b) \triangleleft b$	rack

colorings by
$$(S, \triangleleft)$$

$$a \times a \triangleleft b$$

I	$End(S^n) \leftarrow B_n^+$	RIII	$(a \triangleleft b) \triangleleft c = (a \triangleleft c) \triangleleft (b \triangleleft c)$	shelf
	$Aut(S^n) \leftarrow B_n$	& RII	$(a \triangleleft b) \stackrel{\sim}{\triangleleft} b = a = (a \stackrel{\sim}{\triangleleft} b) \triangleleft b$	rack
	$S \hookrightarrow (S^n)^{B_n}$	& RI	$a \triangleleft a = a$	quandle
	$a \mapsto (a, \dots, a)$			

colorings by
$$(S, \triangleleft)$$

$$a \times a \triangleleft b$$

$End(S^n) \leftarrow B_n^+$	RIII	$(a \triangleleft b) \triangleleft c = (a \triangleleft c) \triangleleft (b \triangleleft c)$	shelf
$Aut(S^n) \leftarrow B_n$	& RII	$(a \triangleleft b) \stackrel{\sim}{\triangleleft} b = a = (a \stackrel{\sim}{\triangleleft} b) \triangleleft b$	rack
$S \hookrightarrow (S^n)^{B_n}$	& RI	$a \triangleleft a = a$	quandle
$a \mapsto (a, \dots, a)$			

Examples:

S	a⊲b	(S, \lhd) is a	in braid theory
group	$b^{-1}ab$	quandle	Artin: $B_n \hookrightarrow Aut(F_n)$

colorings by
$$(S, \triangleleft)$$

$$a \times b$$

$End(S^n) \leftarrow B_n^+$	RIII	$(a \triangleleft b) \triangleleft c = (a \triangleleft c) \triangleleft (b \triangleleft c)$	shelf
$Aut(S^n) \leftarrow B_n$	& RII	$(a \triangleleft b) \stackrel{\sim}{\triangleleft} b = a = (a \stackrel{\sim}{\triangleleft} b) \triangleleft b$	rack
$S \hookrightarrow (S^n)^{B_n}$	& RI	$a \triangleleft a = a$	quandle
$a \mapsto (a, \dots, a)$			

Examples:

S	$a \triangleleft b$	(S, \lhd) is a	in braid theory
group	$b^{-1}ab$	quandle	Artin: $B_n \hookrightarrow Aut(F_n)$
$\mathbb{Z}[\mathfrak{t}^{\pm 1}]$ Mod	ta + (1-t)b	quandle	Burau: $B_n \to GL_n(\mathbb{Z}[t^{\pm 1}])$

colorings by
$$(S, \triangleleft)$$

$End(S^n) \leftarrow B_n^+$	RIII	$(a \triangleleft b) \triangleleft c = (a \triangleleft c) \triangleleft (b \triangleleft c)$	shelf
$Aut(S^n) \leftarrow B_n$	& RII	$(a \triangleleft b) \stackrel{\sim}{\triangleleft} b = a = (a \stackrel{\sim}{\triangleleft} b) \triangleleft b$	rack
$S \hookrightarrow (S^n)^{B_n}$	& RI	$a \triangleleft a = a$	quandle
$a \mapsto (a, \dots, a)$			

Examples:

S	$a \triangleleft b$	(S, \lhd) is a	in braid theory
group	b ⁻¹ ab	quandle	Artin: $B_n \hookrightarrow Aut(F_n)$
$\mathbb{Z}[\mathfrak{t}^{\pm 1}]$ Mod	ta+(1-t)b	quandle	Burau: $B_n \to GL_n(\mathbb{Z}[t^{\pm 1}])$
Z	a+1	rack	$lg(w), lk_{i,j}$
	free shelf		Dehornoy: order on B _n

G-quandle: a set S and a family of binary operations \triangleleft_g on S, $g \in G$, s.t.

G-quandle: a set S and a family of binary operations \triangleleft_g on S, $g \in G$, s.t.

Example: a $\mathbb{Z}G$ -module $S \mapsto A$ lexander G-quandle $a \triangleleft_g b = ag + b(1-g)$ \Rightarrow a nice functor $Mod_{\mathbb{Z}G} \hookrightarrow G$ -Quandles.

G-quandle: a set S and a family of binary operations \triangleleft_g on S, $g \in G$, s.t.

Example: a $\mathbb{Z}G$ -module $S \mapsto A$ lexander G-quandle

$$a \triangleleft_g b = ag + b(1-g)$$

ightsquigarrow a nice functor $\mathsf{Mod}_{\mathbb{Z}\mathsf{G}} \hookrightarrow \mathsf{G}\text{-Quandles}.$

Remarks:

- $\checkmark \implies \text{all } (S, \triangleleft_g) \text{ are quandles;}$
- $\checkmark \iff (S \times G, (a,g) \triangleleft (b,h) = (a \triangleleft_h b, h^{-1}gh))$ is a quandle;

G-quandle: a set S and a family of binary operations \triangleleft_g on S, $g \in G$, s.t.

Example: a $\mathbb{Z}G$ -module $S \mapsto A$ lexander G-quandle $a \triangleleft_g b = ag + b(1-g)$

 \rightarrow a nice functor $\mathsf{Mod}_{\mathbb{Z}\mathsf{G}} \hookrightarrow \mathsf{G-Quandles}$.

Remarks:

- $\checkmark \implies \text{all } (S, \triangleleft_q) \text{ are quandles};$
- $\checkmark \iff (S \times G, (a,g) \triangleleft (b,h) = (a \triangleleft_h b, h^{-1}gh))$ is a quandle;
- ✓ G can be replaced with any quandle Q.

3 Twisted multi-distributivity

Fix a group G.

G-quandle: a set S and a family of binary operations \triangleleft_g on S, $g \in G$, s.t.

②
$$a \mapsto a \triangleleft_g b$$
 is a bijection $S \to S$,

Double-layer colorings

$$h h^{-1}gh$$

G-quandle: a set S and a family of binary operations \triangleleft_g on S, $g \in G$, s.t.

②
$$a \mapsto a \triangleleft_g b$$
 is a bijection $S \to S$,

Double-layer colorings

3 Twisted multi-distributivity

Fix a group G.

G-quandle: a set S and a family of binary operations \triangleleft_g on S, $g \in G$, s.t.

Double-layer colorings

Lemma: compatible with Reidemeister moves.

Remark: works well in the welded (= loop braid) settings.

Ishii-Iwakiri-Jang-Oshiro, 2012:

G-family of quandles = G-quandle (S, \triangleleft_q) s.t.

Ishii-Iwakiri-Jang-Oshiro, 2012:

G-family of quandles = G-quandle (S, \triangleleft_q) s.t.

I.e., one has a monoid map $G \to Bin(S)$, $g \mapsto \lhd_g$.

Ishii-Iwakiri-Jang-Oshiro, 2012:

G-family of quandles = G-quandle (S, \triangleleft_q) s.t.

I.e., one has a monoid map $G \to Bin(S), g \mapsto \lhd_g$.

Example: Alexander G-quandle.

Ishii-Iwakiri-Jang-Oshiro, 2012:

G-family of quandles = G-quandle (S, \triangleleft_q) s.t.

I.e., one has a monoid map $G \to Bin(S)$, $g \mapsto \triangleleft_q$.

Example: Alexander G-quandle.

Motivation: knotted trivalent graphs.

Ishii-Iwakiri-Jang-Oshiro, 2012:

G-family of quandles = G-quandle (S, \triangleleft_q) s.t.

I.e., one has a monoid map $G \to Bin(S)$, $g \mapsto \lhd_g$.

Example: Alexander G-quandle.

Motivation: knotted trivalent graphs.

L.H. Kauffman, S. Yamada, D.N. Yetter, 1989:

3-Graphs
$$\cong$$
 Diagrams / RI-RVI

Ishii-Iwakiri-Jang-Oshiro, 2012:

G-family of quandles = G-quandle (S, \triangleleft_q) s.t.

I.e., one has a monoid map $G \to Bin(S)$, $g \mapsto \lhd_g$.

Example: Alexander G-quandle.

Motivation: knotted trivalent graphs.

L.H. Kauffman, S. Yamada, D.N. Yetter, 1989:

3-Graphs \cong Diagrams / RI-RVI

Ishii-Iwakiri-Jang-Oshiro, 2012:

G-family of quandles = G-quandle (S, \triangleleft_q) s.t.

I.e., one has a monoid map $G \to Bin(S)$, $g \mapsto \triangleleft_q$.

Example: Alexander G-quandle.

Motivation: knotted trivalent graphs.

L.H. Kauffman, S. Yamada, D.N. Yetter, 1989:

3-Graphs
$$\cong$$
 Diagrams / RI-RVI

Double-layer b $a \triangleleft_h b$ h - 1gh colorings $a \triangleleft_h b$

Lemma: Double-layer colorings are compatible with Reidemeister moves.

Ishii-Iwakiri-Jang-Oshiro, 2012:

G-family of quandles = G-quandle (S, \triangleleft_q) s.t.

I.e., one has a monoid map $G \to Bin(S)$, $g \mapsto \triangleleft_g$.

Example: Alexander G-quandle.

Motivation:

A. Ishii, 2008: \cong 3-Graphs / \downarrow IH

Lemma: Double-layer colorings are compatible with Reidemeister & IH moves

→ invariants of knotted h-bodies.

5 Quasi-representations of B_n

Take a G-quandle (S, \lhd_g) .

For any $\overline{g} \in G^n$, one has a map $\phi_{\overline{g}} \colon B_n \to \operatorname{Aut}(S^n)$ defined by

$$\frac{\overline{\alpha}}{\overline{g}}$$
 β $\frac{\overline{\alpha}\phi_{\overline{g}}(\beta)}{\overline{g}\beta}$

$\sqrt{5}$ Quasi-representations of B_n

Take a G-quandle (S, \lhd_g) .

For any $\overline{g} \in G^n$, one has a map $\phi_{\overline{g}} \colon B_n \to \text{Aut}(S^n)$ defined by

$$\frac{\overline{a}}{\overline{g}} \qquad \beta \qquad \frac{\overline{a}\phi_{\overline{g}}(\beta)}{\overline{g}\beta}$$

$$\textbf{Lemma} \colon \ \phi_{\overline{g}}(\beta\beta') = \phi_{\overline{g}}(\beta)\phi_{\overline{g}\beta}(\beta').$$

5 Quasi-representations of B_n

Take a G-quandle (S, \triangleleft_g) .

For any $\overline{g} \in G^n$, one has a map $\phi_{\overline{g}} \colon B_n \to \text{Aut}(S^n)$ defined by

$$\frac{\overline{a}}{\overline{g}} \qquad \beta \qquad \overline{a} \varphi_{\overline{g}}(\beta)$$

 $\textbf{Lemma} \colon \ \phi_{\overline{g}}(\beta\beta') = \phi_{\overline{g}}(\beta)\phi_{\overline{g}\beta}(\beta').$

Question: Get an honest rep. of B_n ?

Take a G-quandle (S, \triangleleft_g) .

For any $\overline{g} \in G^n$, one has a map $\phi_{\overline{g}} \colon B_n \to \text{Aut}(S^n)$ defined by

$$\frac{\overline{a}}{\overline{g}} \qquad \beta \qquad \frac{\overline{a}\varphi_{\overline{g}}(\beta)}{\overline{g}\beta}$$

Lemma: $\varphi_{\overline{q}}(\beta\beta') = \varphi_{\overline{q}}(\beta)\varphi_{\overline{q}\beta}(\beta')$.

Question: Get an honest rep. of B_n ?

Answer for the particular case

$$\checkmark G = F_n, \ \overline{g}^* = (\underbrace{x_1, \dots, x_n}_{\text{generators}}) \\ \Longrightarrow \overline{g}^* \beta = (\beta(x_1), \dots \beta(x_n))$$

$$\checkmark$$
 S is an Alexander G-quandle $\Longrightarrow \phi_{\overline{g}} \colon B_n \to GL_n(\mathbb{Z}G)$

Take a G-quandle (S, \triangleleft_g) .

For any $\overline{g} \in G^n$, one has a map $\phi_{\overline{g}} \colon B_n \to \text{Aut}(S^n)$ defined by

$$\frac{\overline{a}}{\overline{g}} \qquad \beta \qquad \frac{\overline{a}\varphi_{\overline{g}}(\beta)}{\overline{g}\beta}$$

Lemma: $\varphi_{\overline{q}}(\beta\beta') = \varphi_{\overline{q}}(\beta)\varphi_{\overline{q}\beta}(\beta')$.

Question: Get an honest rep. of B_n ?

Answer for the particular case

$$\checkmark G = F_n, \ \overline{g}^* = (\underbrace{x_1, \dots, x_n}) \qquad \Longrightarrow \quad \overline{g}^* \beta = (\beta(x_1), \dots \beta(x_n))$$
generators

✓ S is an Alexander G-quandle

$$\Longrightarrow \quad \phi_{\overline{g}} \colon B_n \to GL_n(\mathbb{Z}G)$$

Theorem: One has a group morphism

$$\varphi \colon \mathsf{B}_{\mathsf{n}} \to \mathsf{GL}_{\mathsf{n}}(\mathbb{Z}\mathsf{F}_{\mathsf{n}}) \rtimes \mathsf{B}_{\mathsf{n}}, \\ \beta \mapsto (\varphi_{\overline{\mathsf{a}}^*}(\beta), \beta).$$

6 Long-Moody construction

Theorem: One has a group morphism

$$\varphi \colon B_n \to GL_n(\mathbb{Z}F_n) \rtimes B_n,$$

$$\beta \mapsto (\phi_{\overline{g}^*}(\beta), \beta).$$

$$\begin{array}{l} \textbf{Proof:} \ \ (\phi_{\overline{g}^*}(\beta),\beta)(\phi_{\overline{g}^*}(\beta'),\beta') = (\phi_{\overline{g}^*}(\beta) \cdot \beta \phi_{\overline{g}^*}(\beta'),\beta\beta') \\ = (\phi_{\overline{g}^*}(\beta)\phi_{\overline{g}^*\beta}(\beta'),\beta\beta') = (\phi_{\overline{g}^*}(\beta\beta'),\beta\beta'). \end{array}$$

6 Long-Moody construction

Theorem: One has a group morphism

$$\varphi \colon B_{n} \to GL_{n}(\mathbb{Z}F_{n}) \rtimes B_{n},$$
$$\beta \mapsto (\varphi_{\overline{\alpha}^{*}}(\beta), \beta).$$

$$\textbf{Corollary}\colon\thinspace \rho\colon F_n\rtimes B_n\to \operatorname{Aut}(V) \quad \stackrel{\phi_*}{\leadsto} \quad \rho^+\colon B_n\to \operatorname{Aut}(V^{\oplus n}).$$

Theorem: One has a group morphism

$$\varphi \colon B_{n} \to GL_{n}(\mathbb{Z}F_{n}) \rtimes B_{n},$$
$$\beta \mapsto (\varphi_{\overline{g}^{*}}(\beta), \beta).$$

$$\textbf{Corollary}\colon\thinspace \rho\colon F_n\rtimes B_n\to \text{Aut}(V) \qquad \stackrel{\phi_*}{\leadsto} \qquad \rho^+\colon B_n\to \text{Aut}(V^{\oplus n}).$$

Isn't this construction weird?

Theorem: One has a group morphism

$$\varphi \colon B_n \to GL_n(\mathbb{Z}F_n) \rtimes B_n,$$
$$\beta \mapsto (\varphi_{\overline{g}^*}(\beta), \beta).$$

 $\textbf{Corollary} \colon \ \rho \colon \mathsf{F}_n \rtimes \mathsf{B}_n \to \mathsf{Aut}(V) \qquad \stackrel{\phi_*}{\leadsto} \qquad \rho^+ \colon \mathsf{B}_n \to \mathsf{Aut}(V^{\oplus n}).$

Isn't this construction weird? No!!!

 \checkmark F_n ≡ B_n \hookrightarrow B_{n+1} in several ways

 \implies one can start with a B_{n+1} -rep.

Theorem: One has a group morphism

$$\varphi \colon B_n \to GL_n(\mathbb{Z}F_n) \rtimes B_n,$$
$$\beta \mapsto (\varphi_{\overline{g}^*}(\beta), \beta).$$

Corollary: $\rho: F_n \rtimes B_n \to \operatorname{Aut}(V)$ $\stackrel{\varphi_*}{\leadsto}$ $\rho^+: B_n \to \operatorname{Aut}(V^{\oplus n})$.

Isn't this construction weird? No!!!

✓
$$F_n \rtimes B_n \hookrightarrow B_{n+1}$$
 in several ways

⇒ one can start with a B_{n+1} -rep.

 $\checkmark \rho^+$ is much richer than ρ .

Examples:

• trivial rep. of $B_{n+1} \rightarrow Burau rep.$ of B_n ;

Theorem: One has a group morphism

$$\varphi \colon B_n \to GL_n(\mathbb{Z}F_n) \rtimes B_n,$$
$$\beta \mapsto (\phi_{\overline{g}^*}(\beta), \beta).$$

Corollary: $\rho: F_n \rtimes B_n \to \operatorname{Aut}(V)$ $\stackrel{\varphi_*}{\leadsto}$ $\rho^+: B_n \to \operatorname{Aut}(V^{\oplus n})$.

Isn't this construction weird? No!!!

✓ $F_n \rtimes B_n \hookrightarrow B_{n+1}$ in several ways

⇒ one can start with a B_{n+1} -rep.

✓ ρ^+ is much richer than ρ .

Examples:

- trivial rep. of $B_{n+1} \rightarrow Burau rep.$ of B_n ;
- ullet trivial rep. of P_{n+1} & scaling \leadsto Gassner rep. of P_n ;

Theorem: One has a group morphism

$$\varphi \colon B_n \to GL_n(\mathbb{Z}F_n) \rtimes B_n,$$
$$\beta \mapsto (\phi_{\overline{g}^*}(\beta), \beta).$$

Corollary: $\rho: F_n \rtimes B_n \to \operatorname{Aut}(V)$ $\stackrel{\varphi_*}{\leadsto}$ $\rho^+: B_n \to \operatorname{Aut}(V^{\oplus n})$.

Isn't this construction weird? No!!!

✓ $F_n \times B_n \hookrightarrow B_{n+1}$ in several ways

⇒ one can start with a B_{n+1} -rep.

✓ ρ^+ is much richer than ρ .

Examples:

- trivial rep. of $B_{n+1} \rightarrow Burau rep.$ of B_n ;
- trivial rep. of P_{n+1} & scaling \sim Gassner rep. of P_n ;
- trivial rep. of B_2 & scaling & shifting & 2 iterations \sim Lawrence-Krammer rep. of B_n .

Theorem: One has a group morphism

$$\varphi \colon B_{n} \to GL_{n}(\mathbb{Z}F_{n}) \rtimes B_{n},$$
$$\beta \mapsto (\varphi_{\overline{g}^{*}}(\beta), \beta).$$

 $\textbf{Corollary}\colon\thinspace \rho\colon F_n\rtimes B_n\to \text{Aut}(V) \qquad \stackrel{\phi_*}{\leadsto} \qquad \rho^+\colon B_n\to \text{Aut}(V^{\oplus n}).$

Isn't this construction weird? No!!!

✓
$$F_n \rtimes B_n \hookrightarrow B_{n+1}$$
 in several ways

⇒ one can start with a B_{n+1} -rep.

 $\checkmark \rho^+$ is much richer than ρ .

✓ Convenient for explicit calculations:

$$\begin{aligned} \phi(\sigma_i) &= (\begin{pmatrix} I_{i-1} & 0 & 0 & 0 \\ 0 & 0 & x_{i+1} & 0 \\ 0 & 1 & 1 - x_{i+1} & 0 \\ 0 & 0 & 0 & I_{n-i-1} \end{pmatrix}, \sigma_i), \\ \sigma_i x_i &= x_{i+1} \sigma_i, \ \sigma_i x_{i+1} = x_{i+1}^{-1} x_i x_{i+1} \sigma_i. \end{aligned}$$

7 Reduced version

 $\textbf{Corollary}\colon\thinspace \rho\colon F_n\rtimes B_n\to \text{Aut}(V) \qquad \stackrel{\phi_*}{\leadsto} \qquad \rho^+\colon B_n\to \text{Aut}(V^{\oplus n}).$

$$(V, \rho_{B_n}) \hookrightarrow (V^{\oplus n}, \rho^+),$$

 $a \mapsto (a, \dots, a).$

7 Reduced version

 $\textbf{Corollary}\colon\thinspace \rho\colon F_n\rtimes B_n\to \text{Aut}(V) \qquad \stackrel{\phi_*}{\leadsto} \qquad \rho^+\colon B_n\to \text{Aut}(V^{\oplus n}).$

$$(V, \rho_{B_n}) \hookrightarrow (V^{\oplus n}, \rho^+),$$

 $a \mapsto (a, \dots, a).$

 $\textbf{Better} \colon \ \rho^+ \, \widetilde{=} \, \rho_{B_{\mathfrak{n}}} \oplus \rho_{\text{red}}^+.$

C.f. reduced Burau rep.!

7 Reduced version

 $\textbf{Corollary}\colon\thinspace \rho\colon F_n\rtimes B_n\to \text{Aut}(V) \quad \stackrel{\phi_*}{\leadsto} \quad \rho^+\colon B_n\to \text{Aut}(V^{\oplus n}).$

$$(V, \rho_{B_n}) \hookrightarrow (V^{\oplus n}, \rho^+),$$

 $a \mapsto (a, \dots, a).$

Better: $\rho^+ \cong \rho_{B_n} \oplus \rho_{red}^+$.

C.f. reduced Burau rep.!

Question: A self-distributive version of ρ_{red}^+ ?

8 To be continued...

• Extract information about braids?

Motivation: D. Krammer 2002, T. Ito & B. Wiest 2012: classical and dual Garside length in terms of Lawrence matrices.

• Extract information about braids?

Motivation: D. Krammer 2002, T. Ito & B. Wiest 2012: classical and dual Garside length in terms of Lawrence matrices.

• In $\mathsf{Mat}_n(\mathbb{Z}\mathsf{F}_n\rtimes \mathsf{B}_n)$, one has "pseudo-Hecke" relations: $(\phi(\sigma_i)+(g_{i+1},\sigma_i))(\phi(\sigma_i)-(1,\sigma_i))=0.$ How to extract genuine reps of H_n ?

• Extract information about braids?

Motivation: D. Krammer 2002, T. Ito & B. Wiest 2012: classical and dual Garside length in terms of Lawrence matrices.

- In $\mathsf{Mat}_n(\mathbb{Z}\mathsf{F}_n\rtimes \mathsf{B}_n)$, one has "pseudo-Hecke" relations: $(\phi(\sigma_i)+(g_{i+1},\sigma_i))(\phi(\sigma_i)-(1,\sigma_i))=0.$ How to extract genuine reps of H_n ?
- Other examples of G-quandles ? Related constructions of reps of B_n ?

• Extract information about braids?

Motivation: D. Krammer 2002, T. Ito & B. Wiest 2012: classical and dual Garside length in terms of Lawrence matrices.

- In $\mathsf{Mat}_n(\mathbb{Z}\mathsf{F}_n\rtimes \mathsf{B}_n)$, one has "pseudo-Hecke" relations: $(\phi(\sigma_i)+(g_{i+1},\sigma_i))(\phi(\sigma_i)-(1,\sigma_i))=0.$ How to extract genuine reps of H_n ?
- Other examples of G-quandles ? Related constructions of reps of B_n ?
- Study emerging "holonomy" Yang-Baxter operators?
 (Cf. Kashaev-Reshetikhin.)