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0 '90, Lawrence: homological reps of the Hy;

0 '94, Long-Moody: a generalization for the By;
homological and algebraic versions;

0 '00, Krammer & Bigelow: certain Lawrence reps are
faithful;

O '08, Bigelow-Tian: further generalization; completely
algebraic version;

O here: a combinatorial version.
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Examples:

S a<b (S,<) is a in braid theory
group b—Tab quandle Artin: Bn < Aut(Fn)
zie=1Mod | ta+(1—t)b | quandle | Burau: Bn — GL,(Z[tF])

Z a+1 rack lg(w),lky ;
free shelf Dehornoy: order on By,
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Fix a group G.

G-quandle: a set S and a family of binary operations <4
on S, gegG, s.t.

@ (a<ggb)<pce=(a<nc) p-1gn (b<dnc),
@ ar—a<gb is a bijection S— S,
@ a<ga=a.

b a<pb
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Double-layer colorings Nh gh
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Lemma: compatible with Reidemeister moves.
Remark: works well in the welded (= Loop braid) settings.
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/\‘4\/\Digression: G-families of quandles

Ishii-Iwakiri-Jang-Oshiro, 2012:

G-family of quandles = G-quandle (§,<g) s.t.
@ (a<gb)<hb=a<gnb,
@ a <q b=a.
I.e., one has a monoid map G — Bin(S), g—~<y.
Example: Alexander G-quandle.

Motivation:
knotted

handle-bodies (Q Emi @

A. Ishii, 2008: = 3-Graphs / I BN H

Lemma: Double-layer colorings are compatible with
Reidemeister & IH moves
~ invariants of knotted h-bodies.
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B/ Quasi-representations of B,

Take a G-quandle (S,<yg).
For any ge G™, one has a map ¢g: By — Aut(S™) defined by

] P s

| Qf

Lemma: og(BR’) = og(B)egp(B’).
Question: Get an honest rep. of BL7
Answer for the particular case

0 G=Fn, " =(x1,.-,Xn) = g'B=(B(x1),...B(xn))
%,—/
generators

0 S is an Alexander G-quandle =  @g: Bn— GL,(ZG)

Theorem: One has a group morphism
@: Bn — GL,(ZF,) x By,

B (@g-(B),B).
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/\‘6\/\ Long-Moody construction

Theorem: One has a group morphism
@: Bn — GL(ZF,) x By,
B (9g+(B),B).
Corollary: p: Fu xBn —Aut(V) & pt: B, — Aut(Ven),
Isn’t this construction weird? No!!!
U FnxBn = Bny1 in several ways

= one can start with a B, 1-rep.
O p™ is much richer than p.

Examples:

o trivial rep. of B,,.1 ~ Burau rep. of By;

o trivial rep. of P, & scaling ~ Gassner rep. of Py;

o trivial rep. of By, & scaling & shifting & 2 iterations ~»
Lawrence-Krammer rep. of By.



<&/ Long-Moody construction

Theorem: One has a group morphism
@: Bn — GL(ZF,) x By,

B+ (@g+(B),B)-
Corollary: p: F, x B, — Aut(V) & pt:Bn — Aut(Ven).

Isn’t this construction weird? No!!!
U FnxBn <= Bny1 in several ways
= one can start with a B, i-rep.
O pt is much richer than p.
0 Convenient for explicit calculations:

Iy O 0 0
0 0 x4 0
oo = o 7 1 %, o [°
1

1
0 0 0  In.ig

0iXi =Xi4+10{, O{Xit1 =X{

XiX{4+10}.
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XX Reduced version

Corollary: p: F, xB, —Aut(V) & pt: B — Aut(Ven).

(Va an) =1 (V®n) p+)a
a— (ay...,a).
Better: p" =pg, @p/ ;.
C.f. reduced Burau rep.!

Question: A self-distributive version of pjed?



84 To be continued...

o Extract information about braids?

Motivation: D. Krammer 2002, T. Ito & B. Wiest
2012: classical and dual Garside Length in terms of
Lawrence matrices.



84 To be continued...

0 Extract information about braids?
Motivation: D. Krammer 2002, T. Ito & B. Wiest
2012: classical and dual Garside Length in terms of
Lawrence matrices.

o In Mat, (ZF, x By), one has “pseudo-Hecke" relations:
(@(oi) +(gir1,01))(@(0i) —(1,0¢)) =0.
How to extract genuine reps of H,,7



84 To be continued...

o Extract information about braids?

Motivation: D. Krammer 2002, T. Ito & B. Wiest
2012: classical and dual Garside Length in terms of
Lawrence matrices.

o In Mat, (ZF, x By), one has “pseudo-Hecke" relations:

(@(oi) +(gir1,01))(@(0i) —(1,0¢)) =0.
How to extract genuine reps of H,,7

o Other examples of G-quandles ?
Related constructions of reps of B, ?
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o Extract information about braids?

Motivation: D. Krammer 2002, T. Ito & B. Wiest
2012: classical and dual Garside Length in terms of
Lawrence matrices.

o In Mat, (ZF, x By, ), one has “pseudo-Hecke" relations:
(@(oi) +(gir1,01))(@(0i) —(1,0¢)) =0.
How to extract genuine reps of H,,7

o Other examples of G-quandles ?
Related constructions of reps of B, ?

o Study emerging “holonomy’ Yang-Baxter operators?
(Cf. Kashaev-Reshetikhin.)



